Raspberry Pi Pico and LoRaWAN from CircuitPython

Overview

Raspberry Pi Pico and LoRaWAN from CircuitPython

Hero image

Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython and the Adafruit TinyLoRa library. Based on the TinyLoRa example code by Adafruit.

Bill of Materials

The following hardware is needed:

Item Link
Raspberry Pi Pico https://www.raspberrypi.org/products/raspberry-pi-pico/
Adafruit RFM95x Lora Radio https://www.adafruit.com/product/3072
Edge-Mount SMA Connector https://www.adafruit.com/product/1865
868MHz or 915MHz Antenna https://www.adafruit.com/product/3340
Male-Female Jumper Wires https://www.adafruit.com/product/1953
Breadboard https://www.adafruit.com/product/64

Wiring the RFM9x Radio Module

Wiring diagram

After soldering your RFM95x module and attaching an antenna the mapping between the pins on the module breakout board and your Pico should be as follows:

Pico RP2040 SX1276 Module RFM95W Breakout
3V3 (OUT) VCC VIN
GND GND GND GND
Pin 10 GP7 DIO0 G0
Pin 11 GP8 NSS CS
Pin 12 GP9 RESET RST
Pin 14 GP10 DIO1 G1
Pin 21 GP16 (SPI0 RX) MISO MISO
Pin 24 GP 18 (SPI0 SCK) SCK SCK
Pin 25 GP19 (SPI0 TX) MOSI MOSI

The Things Network

To make use of a LoraWAN-enabled Pico you’re going to need to be in range of a LoRa gateway. Fortunately there is The Things Network, an open-source community LoRaWAN network that has global coverage. Depending on where you are located, it’s quite possible that you’re already in coverage. However, if you aren’t, then you needn’t worry too much, the days when the cost of a LoRaWAN base station was of the order of several thousand dollars are long gone. You can now pick up a LoRa gateway for under $100.

While any LoRa device in range of your new gateway will have its packets received and sent upstream to The Things Network, the data packets will be dropped on the ground unless they have somewhere to go. In other words, The Things Network needs to know where to route the packets your gateway is receiving.

Setting up The Things Network

Adafruit has written up a full walkthrough on how to set up and application and register your device with The Things Network. You'll need to set three unique identifiers in the code.py file; the Device Address, Network Session Key, and Application Session Key. These can be found on the Device Overview page.

NOTE: The example code uses ABP rather than OTAA as the Activation Method.

Deploying to your Pico

Copy the contents of the src/ directory in the repo to your CIRCUITPY drive. This includes the code.py file and the lib/ folder and all of its contents, including subfolders and any .mpy files present in the library directory.

Sending data

Restart the board. The code should start running immediately, there will be debug output available on the USB CDC Serial console. If you see "Packet Sent!" then the packets are being sent up to The Things Network via LoRaWAN and you should be able to see your data arriving in the Network Console.

Adding a decoder

We're sending out temperature reading as a byte array.

temp = microcontroller.cpu.temperature
temp = int(temp * 100)

data = bytearray(2)
data[0] = (temp >> 8) & 0xFF
data[1] = temp & 0xFF

By default the payload is displayed as a hexidecimal values in the Network Console. However we can add a data decoder;

function Decoder(bytes, port) {
  var decoded = {};
  var celciusInt = (bytes[0] << 8) | bytes[1];
  decoded.temp = celciusInt / 100;

  return decoded;

this will auto-magically decode the raw payload and display the real value in The Things Network Console.

More information

You can find more information about using LoRaWAN and The Things Network from CircuitPython in the Adafruit RFM95x tutorial pages. Alternatively you may want to use the RFM95x module using C, in which case you should take a look at Sandeep Mistry's pico-lorawan library, and getting started instructions.

Libraries

The following libraries are used:

Library License Github
Bus Device MIT https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
RFM95x MIT https://github.com/adafruit/Adafruit_CircuitPython_RFM9x
TinyLoRa LGPL https://github.com/aallan/pico-lorawan-circuitpython

License

This software is released under the MIT License.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Alasdair Allan
Scientist, Author, Hacker, Tinkerer, Maker and Journalist. Is responsible for the Raspberry Pi documentation.
Alasdair Allan
Electrolux Pure i9 robot vacuum integration for Home Assistant.

Home Assistant Pure i9 This repository integrates your Electrolux Pure i9 robot vacuum with the smart home platform Home Assistant. The integration co

Niklas Ekman 15 Dec 22, 2022
Home Assistant component to handle key atom

KeyAtome Home Assistant component to handle key atom, a Linky-compatible device made by Total/Direct-Energie. Installation Either use HACS (default),

18 Dec 21, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home assistant adds support for Midea dehumidifier appliances via the local area network. homeassistant-midea-dehumidifier-l

Nenad Bogojevic 91 Dec 28, 2022
a weather application for the raspberry pi and the Pimorioni Inky pHAT.

raspi-weather a weather application for the raspberry pi and the Inky pHAT

Derek Caelin 59 Oct 24, 2022
An embedded application for toy-car controlling based on Raspberry Pi 3 Model B and AlphaBot2-Pi.

An embedded application for toy-car controlling based on Raspberry Pi 3 Model B and AlphaBot2-Pi. This is the source codes of my programming assignmen

StardustDL 4 Oct 19, 2022
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
Trajectory optimization package for Mini-Pupper robot

Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu

Sotaro Katayama 38 Aug 17, 2022
Inykcal is a software written in python for selected E-Paper displays.

Inykcal is a software written in python for selected E-Paper displays. It converts these displays into useful information dashboards. It's open-source, free for personal use, fully modular and user-f

Ace 727 Jan 02, 2023
My self-hosting infrastructure, fully automated from empty disk to operating services

Khue's Homelab Current status: ALPHA This project utilizes Infrastructure as Code to automate provisioning, operating, and updating self-hosted servic

Khue Doan 6.4k Dec 31, 2022
A 3rd party Moonraker component to create timelapse of 3D prints.

A 3rd party Moonraker component to create timelapse of 3D prints.

Mainsail-Crew 166 Dec 26, 2022
Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

GB Renewable Forecast Display This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the g

Andy Brace 32 Jul 02, 2022
A Fast, Easy, and User Friendly way to control Robotics Actuators.

T-Motor Controller A Fast, Easy, and User Friendly way to control Robotics Actuators. View Demo · Report Bug · Request Feature Table of Contents About

26 Aug 23, 2022
A small Python app to converse between MQTT messages and 433MHz RF signals.

mqtt-rf-bridge A small Python app to converse between MQTT messages and 433MHz RF signals. This acts as a bridge between Paho MQTT and rpi-rf. Require

David Swarbrick 3 Jan 27, 2022
Point Density-Aware Voxels for LiDAR 3D Object Detection (CVPR 2022)

PDV PDV is LiDAR 3D object detection method. This repository is based off [OpenPCDet]. Point Density-Aware Voxels for LiDAR 3D Object Detection Jordan

Toronto Robotics and AI Laboratory 114 Dec 21, 2022
Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Greg Robinson 3 Aug 10, 2022
Lego Mindstorms EV3 and Lego Spike Prime

Lego Mindstorms EV3 and Lego Spike Prime What is FLL? The FIRST LEGO League Challenge Robotics Tournament challenges students from 9 to 16 years old t

Danimar Campos da Costa 1 Nov 14, 2021
A simple program to make MSI Modern 15 speaker and microphone mute led work.

MSI Modern 15 sound led fixup for linux A simple program to fix the MSI Modern 15 speaker and microphone mute LEDs. Installation Requirements pulsectl

Seyed Danial Movahed 4 Oct 18, 2022
DongshanPI Seven for STM32MP157DAC.

STM32MP1 Buildroot External Tree

DongshanPI 14 May 06, 2022
Workshop for student hackathons focused on IoT dev

Scenario: The Mutt Matcher (IoT version) According to the World Health Organization there are more than 200 million stray dogs worldwide. The American

Microsoft 15 Aug 10, 2022
A ESP32 project template with a web interface built in React

ESP AP Webserver demo.mp4 This is my experiment with "mobile app development" for the ESP32. The project consists of two parts, the ESP32 code and the

8 Dec 15, 2022