Код файнтюнинга оригинального CLIP на русский язык

Overview

О чем репозиторий

В этом репозитории представлен способ файтюнить оригинальный CLIP на новый язык

Model predictions

Почему модель не видит женщину и откуда на картинке с текстом слон?

Основные особенности:

  • Используются оригинальные картиночные и текстовые трансформеры;
  • Поэтому есть возможность использовать оригинальные эмбединги картинок, а тексты обучать или дообучать на требуемый язык.

Что ожидалось?

  • Для обучения трансформера русскому языку будет достаточно 3.7 млн пар картинка-текст;
  • Будет использована вся сила исходных картиночных эмбедингов, обученных на сотнях миллионов пар картинка-текст;
  • Сохранится скорость и качество работы алгоритма.

Что не получилось?

  • Модель выучила русский, но не так хорошо, как ожидалось. Видно, что она многое не понимает. Газель для нее - это машина, а не животное. А метроном и минарет для неё вообще неизвестны;
  • 3.7 млн пар мало для полноценного обучения текстового трансформера для нового языка, не хватает охвата понятий;

Как улучшить?

  • Больше и разнообразнее данных;
  • Заменить текстовый трансформер на уже предобученную языковую модель нужного языка.

Какие репозитории использовались?

Детали

Веса обученной модели можно скачать по ссылке. Код инференса есть в скрипте testing.py

Датасет

Датасет взят с соревнования Yandex Cup 2021, но правилами запрещается использовать его вне соревнования.

Всего там было 5.5 млн картинок, к каждой шло 5 поисковых запросов, после которых люди выбрали эту картинку.

Вместо картинок были ссылки на картинки, мне удалось скачать только 3.7 млн.

Токенайзер для русского языка (и любого другого)

У меня достаточно ограниченный опыт в NLP, поэтому большую часть проблем вызвала именно языковая часть. Я не очень понимала, какой подход может заработать, а какой нет, поэтому остановилась просто на рабочем, если кто-то подскажет, как надо было делать правильно - прошу в личные сообщения :)

В итоге я сделала так:

  • Переписала оригинальный токенайзер так, чтобы он умел в английские буквы и русские;
  • Пришлось убрать обработку utf символов, так как русские слова тогда мапились в набор букв, а не в слово. Никак иначе не удавалось разобраться с этой проблемой;
  • Оставила английские bpe пары, так как в датасете встречались английские слова;
  • Добавила русские bpe пары, нашла файл только у переводчика от фейсбука, но пришлось почистить от дублей.

Трансформер для картинок

Оригинальный ViT-B/32 с замороженными весами.

Обучение

  • Подгружала веса оригинального клипа;
  • Замораживала картиночный трансформер;
  • Текстовый трансформер переопределяла с новым размером словаря;
  • Дальше стандартное обучение clip, где картиночные эмбединги не меняются, а текстовые учатся с нуля;
  • Всего было 30 эпох, на одну эпоху уходило 70-90 минут, всего около 40 часов на A100 80gb c amp.

Ресурсы

Обучение производилось на платформе Yandex Datasphere, по сути - это jupyter lab/notebooks с урезанным bash функционалом, но очень сильными машинками.

Jupyter наложи свой отпечаток, в коде остались ноутбуковские артефакты - например, вынесение аргументов в класс в скрипте, а не передача через командную строку.

К сожалению, у меня не было возможности отладить код на обычном сервере или компьютере, так как ноут слабый, всё падало при загрузке модели.

Но код в том виде, что есть, работает запуском скрипта main.py (если его импортировать в ноутбук, хехе)

Результаты

Метрики по нескольким датасетам можно посмотреть ниже. А сейчас хотелось бы обсудить особенности обученной модели.

correlation

  • В целом, результаты неплохие и все кроме одной картинки имеют наибольшую корреляцию с подходящим текстом, а с остальными маленькую;
  • Но про фото текста модель, увы, не знает ничего, получается, в датасете не было достаточного количества подобных данных;
  • Ракета угадывается на нескольких фото, хотя один раз, вероятно, это не она, что тоже нормально;
  • Самое забавное с фото кота, потому что в надписи присутствует слово фото - и модель, напомню, обученная на поисковых запросах, хорошо знает что такое фото. Для силуэта лошади и текста она выдает низкие корреляции. Силуэт - это рисунок, а про текст она ничего не знает. Если заменить фразу "фото морды полосатого кота" на "морда полосатого кота", то эти корреляции уходят.

Если посмотреть на картинку в начале страницы, то там у модели самые большие проблемы опять с текстом... и с женщиной. Модель видит ракету, почему-то равнину и только потом женщину.

В репозитории и блоге Сбера, откуда я взяла код для этих двух визуализаций, с женщиной всё в порядке. А текст тоже имеет неверные корреляции.

Еще одна картинка с матрицей ошибок по датасету cifar10. Для остальных датасетов визуализации можно найти в папке pics.

cifar10

Самым проблемным оказался кот и совершенно не ясно почему! Остальные недопонимания достаточно понятны, а с котом нет.

Результаты - метрики

Сравнительная табличка результатов работы нескольких алгоритмов, метрика accuracy потому что у Сбера и OpenAI она уже посчитана.

У моей модели и сберовской язык русский (и мы классы могли немного по-разному перевести).

Для OpenAI язык английский, данные из статьи.

Датасет Cifar10 Cifar100 Caltech101 Размер датасета для обучения Время обучения
CLIP Russian (моя модель) 76% 32% 54% 3.7 млн картинок и 5 поисковых запросов к каждой ~40 часов на А100 80gb
Sber ruCLIP* 78% 41% - Предобученная RuGPT3Small и 3 млн пар 5 дней на 16 Tesla GPU V100
OpenAi CLIP** 95% 80% 93% 400 million (image, text) pairs collected from the internet 12 days on 256 V100 GPUs***
  • * Блогпост о ruCLIP от Сбера
  • ** Paper OpenAI
  • *** У оригинального клипа это всё время обучения, в то время как у Сбера и моего клипа - это только дообучение русскому языку

Моя модель +- сравнима с результатами модели Сбера, хоть у меня и не использовалась предобученная модель. Ну и на достижение такого результата затрачено сильно меньше вычислительных ресурсов. На лидерборде соревнования эти можели показывали тоже примерно равный результат.

Названия классов, переведенных на русский, и код инференса можно увидеть в папке testing.

Owner
Valentina Biryukova
Data Scientist, ML/DL Engineer
Valentina Biryukova
Collection of tools to be more productive in your work environment and to avoid certain repetitive tasks. 💛💙💚

Collection of tools to be more productive in your work environment and to avoid certain repetitive tasks. 💛💙💚

Raja Rakotonirina 2 Jan 10, 2022
Serverless demo showing users how they can capture (and obfuscate) their Lambda payloads in Datadog APM

Serverless-capture-lambda-payload-demo Serverless demo showing users how they can capture (and obfuscate) their Lambda payloads in Datadog APM This wi

Datadog, Inc. 1 Nov 02, 2021
A minimalist personal blogging system that natively supports Markdown, LaTeX, and code highlighting.

December Welcome to the December blogging system's code repository! Introduction December is a minimalist personal blogging system that natively suppo

TriNitroTofu 10 Dec 05, 2022
A very small (15 lines of code) and beautiful fetch script (exclusively for Arch Linux).

minifetch A very small (15 lines of code) and beautiful fetch script (exclusively for Arch Linux). There are many fetch scripts out there but I wanted

16 Jul 11, 2022
For when you really need to rank things

Comparisonator For when you really need to rank things. Do you know that feeling when there's this urge deep within you that tells you to compare thin

Maciej Wilczyński 1 Nov 01, 2021
The Begin button and menu for the Meadows operating system. The start button for UNIX/Linux.

By: Seanpm2001, Meadows Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afri

Sean P. Myrick V19.1.7.2 4 Aug 28, 2022
Automatically load and dump your dataclasses 📂🙋

file dataclasses Installation By default, filedataclasses comes with support for JSON files only. To support other formats like YAML and TOML, filedat

Alon 1 Dec 30, 2021
A complete python calculator with 2 modes Float and Int numbers.

Python Calculator This program is made for learning purpose. Getting started This Program runs using python, install it via terminal or from thier ofi

Felix Sanchez 1 Jan 18, 2022
Python Function to manage users via SCIM

Python Function to manage users via SCIM This script helps you to manage your v2 users. You can add and delete users or groups, add users to groups an

4 Oct 11, 2022
Antchain-MPC is a library of MPC (Multi-Parties Computation)

Antchain-MPC Antchain-MPC is a library of MPC (Multi-Parties Computation). It include Morse-STF: A tool for machine learning using MPC. Others: Commin

Alipay 37 Nov 22, 2022
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Nikolaos Avouris 2 Dec 05, 2021
Fused multiply-add (with a single rounding) for Python.

pyfma Fused multiply-add for Python. Fused multiply-add computes (x*y) + z with a single rounding. Useful for dot products, matrix multiplications, po

Nico Schlömer 18 Nov 08, 2022
Repository for 2021 Computer Vision Class @ Chulalongkorn University

2110443 - Computer Vision (2021/2) Computer Vision @ Chulalongkorn University Anaconda Download Link https://www.anaconda.com/download/ Miniconda and

Chula PIC Lab 5 Jul 19, 2022
A tool to nowcast quarterly data with monthly indicators: US consumption example

MIDAS_Nowcaster A tool to nowcast quarterly data with monthly indicators: US consumption example Pulls data directly from FRED from a list of codes -

Gene Kindberg-Hanlon 3 Oct 06, 2022
适用于HoshinoBot下的雀魂插件。可进行近期对局查询、查询个人数据等功能,更多功能正在扩展

Majsoul_bot This is a Majsoul plugin for HoshinoBot 这是一个HoshinoBot的雀魂相关插件 本项目目前正在扩展,后续会扩展更多功能,敬请期待 前言 项目地址:https://github.com/DaiShengSheng/Majsoul_bo

黛笙笙 33 Dec 14, 2022
LinkScope allows you to perform online investigations by representing information as discrete pieces of data, called Entities.

LinkScope Client Description This is the repository for the LinkScope Client Online Investigation software. LinkScope allows you to perform online inv

108 Jan 04, 2023
An easy way to access the Scratch API!

The majority of people are likely here because they want to easily access the Scratch API!

rgantzos 0 May 04, 2022
Compiler Final Project - Lisp Interpreter

Compiler Final Project - Lisp Interpreter

2 Jan 23, 2022
VAST - Visualise Abstract Syntax Trees for Python

VAST VAST - Visualise Abstract Syntax Trees for Python. VAST generates ASTs for a given Python script and builds visualisations of them. Install Insta

Jesse Phillips 2 Feb 18, 2022