Код файнтюнинга оригинального CLIP на русский язык

Overview

О чем репозиторий

В этом репозитории представлен способ файтюнить оригинальный CLIP на новый язык

Model predictions

Почему модель не видит женщину и откуда на картинке с текстом слон?

Основные особенности:

  • Используются оригинальные картиночные и текстовые трансформеры;
  • Поэтому есть возможность использовать оригинальные эмбединги картинок, а тексты обучать или дообучать на требуемый язык.

Что ожидалось?

  • Для обучения трансформера русскому языку будет достаточно 3.7 млн пар картинка-текст;
  • Будет использована вся сила исходных картиночных эмбедингов, обученных на сотнях миллионов пар картинка-текст;
  • Сохранится скорость и качество работы алгоритма.

Что не получилось?

  • Модель выучила русский, но не так хорошо, как ожидалось. Видно, что она многое не понимает. Газель для нее - это машина, а не животное. А метроном и минарет для неё вообще неизвестны;
  • 3.7 млн пар мало для полноценного обучения текстового трансформера для нового языка, не хватает охвата понятий;

Как улучшить?

  • Больше и разнообразнее данных;
  • Заменить текстовый трансформер на уже предобученную языковую модель нужного языка.

Какие репозитории использовались?

Детали

Веса обученной модели можно скачать по ссылке. Код инференса есть в скрипте testing.py

Датасет

Датасет взят с соревнования Yandex Cup 2021, но правилами запрещается использовать его вне соревнования.

Всего там было 5.5 млн картинок, к каждой шло 5 поисковых запросов, после которых люди выбрали эту картинку.

Вместо картинок были ссылки на картинки, мне удалось скачать только 3.7 млн.

Токенайзер для русского языка (и любого другого)

У меня достаточно ограниченный опыт в NLP, поэтому большую часть проблем вызвала именно языковая часть. Я не очень понимала, какой подход может заработать, а какой нет, поэтому остановилась просто на рабочем, если кто-то подскажет, как надо было делать правильно - прошу в личные сообщения :)

В итоге я сделала так:

  • Переписала оригинальный токенайзер так, чтобы он умел в английские буквы и русские;
  • Пришлось убрать обработку utf символов, так как русские слова тогда мапились в набор букв, а не в слово. Никак иначе не удавалось разобраться с этой проблемой;
  • Оставила английские bpe пары, так как в датасете встречались английские слова;
  • Добавила русские bpe пары, нашла файл только у переводчика от фейсбука, но пришлось почистить от дублей.

Трансформер для картинок

Оригинальный ViT-B/32 с замороженными весами.

Обучение

  • Подгружала веса оригинального клипа;
  • Замораживала картиночный трансформер;
  • Текстовый трансформер переопределяла с новым размером словаря;
  • Дальше стандартное обучение clip, где картиночные эмбединги не меняются, а текстовые учатся с нуля;
  • Всего было 30 эпох, на одну эпоху уходило 70-90 минут, всего около 40 часов на A100 80gb c amp.

Ресурсы

Обучение производилось на платформе Yandex Datasphere, по сути - это jupyter lab/notebooks с урезанным bash функционалом, но очень сильными машинками.

Jupyter наложи свой отпечаток, в коде остались ноутбуковские артефакты - например, вынесение аргументов в класс в скрипте, а не передача через командную строку.

К сожалению, у меня не было возможности отладить код на обычном сервере или компьютере, так как ноут слабый, всё падало при загрузке модели.

Но код в том виде, что есть, работает запуском скрипта main.py (если его импортировать в ноутбук, хехе)

Результаты

Метрики по нескольким датасетам можно посмотреть ниже. А сейчас хотелось бы обсудить особенности обученной модели.

correlation

  • В целом, результаты неплохие и все кроме одной картинки имеют наибольшую корреляцию с подходящим текстом, а с остальными маленькую;
  • Но про фото текста модель, увы, не знает ничего, получается, в датасете не было достаточного количества подобных данных;
  • Ракета угадывается на нескольких фото, хотя один раз, вероятно, это не она, что тоже нормально;
  • Самое забавное с фото кота, потому что в надписи присутствует слово фото - и модель, напомню, обученная на поисковых запросах, хорошо знает что такое фото. Для силуэта лошади и текста она выдает низкие корреляции. Силуэт - это рисунок, а про текст она ничего не знает. Если заменить фразу "фото морды полосатого кота" на "морда полосатого кота", то эти корреляции уходят.

Если посмотреть на картинку в начале страницы, то там у модели самые большие проблемы опять с текстом... и с женщиной. Модель видит ракету, почему-то равнину и только потом женщину.

В репозитории и блоге Сбера, откуда я взяла код для этих двух визуализаций, с женщиной всё в порядке. А текст тоже имеет неверные корреляции.

Еще одна картинка с матрицей ошибок по датасету cifar10. Для остальных датасетов визуализации можно найти в папке pics.

cifar10

Самым проблемным оказался кот и совершенно не ясно почему! Остальные недопонимания достаточно понятны, а с котом нет.

Результаты - метрики

Сравнительная табличка результатов работы нескольких алгоритмов, метрика accuracy потому что у Сбера и OpenAI она уже посчитана.

У моей модели и сберовской язык русский (и мы классы могли немного по-разному перевести).

Для OpenAI язык английский, данные из статьи.

Датасет Cifar10 Cifar100 Caltech101 Размер датасета для обучения Время обучения
CLIP Russian (моя модель) 76% 32% 54% 3.7 млн картинок и 5 поисковых запросов к каждой ~40 часов на А100 80gb
Sber ruCLIP* 78% 41% - Предобученная RuGPT3Small и 3 млн пар 5 дней на 16 Tesla GPU V100
OpenAi CLIP** 95% 80% 93% 400 million (image, text) pairs collected from the internet 12 days on 256 V100 GPUs***
  • * Блогпост о ruCLIP от Сбера
  • ** Paper OpenAI
  • *** У оригинального клипа это всё время обучения, в то время как у Сбера и моего клипа - это только дообучение русскому языку

Моя модель +- сравнима с результатами модели Сбера, хоть у меня и не использовалась предобученная модель. Ну и на достижение такого результата затрачено сильно меньше вычислительных ресурсов. На лидерборде соревнования эти можели показывали тоже примерно равный результат.

Названия классов, переведенных на русский, и код инференса можно увидеть в папке testing.

Owner
Valentina Biryukova
Data Scientist, ML/DL Engineer
Valentina Biryukova
A wrapper for the apt package manager.

A wrapper for the apt package manager.

531 Jan 04, 2023
Swubcase - The shitty programming language

What is Swubcase? Swubcase is easy-to-use programming language that can fuck you

5 Jun 19, 2022
Nateve transpiler developed with python.

Adam Adam is a Nateve Programming Language transpiler developed using Python. Nateve Nateve is a new general domain programming language open source i

Nateve 7 Jan 15, 2022
An integrated library for checking email if it is registered on social media

An integrated library for checking email if it is registered on social media

Sidra ELEzz 13 Dec 08, 2022
0xFalcon - 0xFalcon Tool For Python

0xFalcone Installation Install 0xFalcone Tool: apt install git git clone https:/

Alharb7 6 Sep 24, 2022
Slientruss3d : Python for stable truss analysis tool

slientruss3d : Python for stable truss analysis tool Desciption slientruss3d is a python package which can solve the resistances, internal forces and

3 Dec 26, 2022
This is where I learn machine learning

This is where I learn machine learning🤷‍ This means that this repo covers no specific topic of machine learning or a project - I work in here when I want to learn/try something

Wilhelm Berghammer 47 Nov 16, 2022
Anti VirusTotal written in Python.

How it works Most of the anti-viruses on VirusToal uses sandboxes or vms to scan and detect malicious activity. The code checks to see if the devices

cliphd 3 Dec 26, 2021
Process GPX files (adding sensor metrics, uploading to InfluxDB, etc.) exported from imxingzhe.com

Xingzhe GPX Processor 行者轨迹处理工具 Xingzhe sells cheap GPS bike meters with sensor support including cadence, heart rate and power. But the GPX files expo

Shengqi Chen 8 Sep 23, 2022
PressurePlate is a multi-agent environment that requires agents to cooperate during the traversal of a gridworld.

PressurePlate is a multi-agent environment that requires agents to cooperate during the traversal of a gridworld. The grid is partitioned into several rooms, and each room contains a plate and a clos

Autonomous Agents Research Group (University of Edinburgh) 6 Dec 03, 2022
Simple macOS StatusBar app to remind you to unplug your laptop when sufficiently charged

ChargeMon Simple macOS StatusBar app to monitor battery charge status and remind you to unplug your Mac when the battery is sufficiently charged Overv

Rhet Turnbull 5 Jan 25, 2022
Materials for the Introduction in Python , Linux , Git and Github

This repository contains all the materials of the presentation on the introduction of python, linux, git and Github.

AMMI 3 Aug 28, 2022
Notebook researcher - Notebook researcher with python

notebook_researcher To run the server, you must follow these instructions: At th

4 Sep 02, 2022
Monitor the New World login queue and notify when it is about to finish

nwwatch - Monitor the New World queue and notify when it is about to finish Getting Started install python 3.7+ navigate to the directory where you un

14 Jan 10, 2022
Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

PyContribs 326 Dec 28, 2022
A Github Action for sending messages to a Matrix Room.

matrix-commit A Github Action for sending messages to a Matrix Room. Screenshot: Example Usage: # .github/workflows/matrix-commit.yml on: push:

3 Sep 11, 2022
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The project retrains itself after every prediction, mak

Arun Singh Babal 2 Jul 01, 2022
使用京东cookie一键生成所有退会链接

JDMemberCloseLinks 本项目旨在使用京东cookie一键生成所有退会链接

hyzaw 68 Jun 10, 2022
Python library for creating PEG parsers

PyParsing -- A Python Parsing Module Introduction The pyparsing module is an alternative approach to creating and executing simple grammars, vs. the t

Pyparsing 1.7k Jan 03, 2023
Snakemake worflow to process and filter long read data from Oxford Nanopore Technologies.

Nanopore-Workflow Snakemake workflow to process and filter long read data from Oxford Nanopore Technologies. It is designed to compare whole human gen

5 May 13, 2022