This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
The code submitted for the Analytics Vidhya Jobathon - February 2022

Introduction On February 11th, 2022, Analytics Vidhya conducted a 3-day hackathon in data science. The top candidates had the chance to be selected by

11 Nov 21, 2022
Film-dosimetry - Film dosimetry for DUVS

film-dosimetry Film dosimetry for DUVS Hi David and Joe, here we go this is a te

Christine L Kuryla 3 Jan 20, 2022
A similarity measurer on two programming assignments on Online Judge.

A similarity measurer on two programming assignments on Online Judge. Algorithm implementation details are at here. Install Recommend OS: Ubuntu 20.04

StardustDL 6 May 21, 2022
Exercicios de Python do Curso Em Video, apresentado por Gustavo Guanabara.

Exercicios Curso Em Video de Python Exercicios de Python do Curso Em Video, apresentado por Gustavo Guanabara. OBS.: Na data de postagem deste repo já

Lorenzo Ribeiro Varalo 0 Oct 21, 2021
System Information Utility With Python

System-Information-Utility This is a simple utility, for the terminal, which allows you to find out information about your PC. It's very easy to run t

2 Apr 15, 2022
A Python Perforce package that doesn't bring in any other packages to work.

P4CMD 🌴 A Python Perforce package that doesn't bring in any other packages to work. Relies on p4cli installed on the system. p4cmd The p4cmd module h

Niels Vaes 13 Dec 19, 2022
This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

PyJava This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

Byzer 6 Oct 17, 2022
A light library to build tiny websites

A light library to build tiny websites

BT.Q 1 Dec 23, 2021
A python program with an Objective-C GUI for building and booting OpenCore on both legacy and modern Macs

A python program with an Objective-C GUI for building and booting OpenCore on both legacy and modern Macs, see our in-depth Guide for more information.

dortania 4.7k Jan 02, 2023
Domoticz-hyundai-kia - Domoticz Hyundai-Kia plugin for Domoticz home automation system

Domoticz Hyundai-Kia plugin Author: Creasol https://www.creasol.it/domotics For

Creasol 7 Aug 03, 2022
Simple Python-based web application to allow UGM students to fill their QR presence list without having another device in hand.

Praesentia Praesentia is a simple Python-based web application to allow UGM students to fill their QR presence list without having another device in h

loncat 20 Sep 29, 2022
You'll learn about Iterators, Generators, Closure, Decorators, Property, and RegEx in detail with examples.

07_Python_Advanced_Topics Introduction 👋 In this tutorial, you will learn about: Python Iterators: They are objects that can be iterated upon. In thi

Milaan Parmar / Милан пармар / _米兰 帕尔马 252 Dec 23, 2022
A basic tic tac toe game on python!

A basic tic tac toe game on python!

Shubham Kumar Chandrabansi 1 Nov 18, 2021
Use `forge` and `cast` commands in Python scripts

foundrycli.py ( 🔥 , 🐍 ) foundrycli.py is a Python library I've made for personal use; now open source. It lets you access forge and cast CLIs from P

Zero Ekkusu 17 Jul 17, 2022
A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

Jordan Klepser 101 Oct 30, 2022
A web app that is written entirely in Python

University Project About I made this web app to finish a project assigned by my teacher. It is written entirely in Python, thanks to streamlit to make

15 Nov 27, 2022
A script for creating battle animations in FEGBA format.

AA2 Made by Huichelaar. I heavily referenced FEBuilderGBA. I also referenced circleseverywhere's Animation Assembler. This is also where I took lzss.p

2 May 31, 2022
NCAR/UCAR virtual Python Tutorial Seminar Series lesson on MetPy.

The Project Pythia Python Tutorial Seminar Series continues with a lesson on MetPy on Wednesday, 2 February 2022 at 1 PM Mountain Standard Time.

Project Pythia Tutorials 6 Oct 09, 2022
Code and data for learning to search in local branching

Code and data for learning to search in local branching

Defeng Liu 7 Dec 06, 2022
Herramienta para pentesting web.

iTell 🕴 ¡Tool con herramientas para pentesting web! Metodos ❣ DDoS Attacks Recon Active Recon (Vulns) Extras (Bypass CF, FTP && SSH Bruter) Respons

1 Jul 28, 2022