This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
🙌Kart of 210+ projects based on machine learning, deep learning, computer vision, natural language processing and all. Show your support by ✨ this repository.

ML-ProjectKart 📌 Repository This kart showcases the finest collection of all projects based on machine learning, deep learning, computer vision, natu

Prathima Kadari 203 Dec 28, 2022
Cobalt Strike Sleep Python Bridge

This project is 'bridge' between the sleep and python language. It allows the control of a Cobalt Strike teamserver through python without the need for for the standard GUI client. NOTE: This project

Cobalt Strike 140 Jan 04, 2023
A wrapper script to make working with ADB (Android Debug Bridge) easier

Python-ADB-Wrapper A wrapper script to make working with ADB (Android Debug Bridge) easier This project was just a simple test to see if I could wrap

18iteration 1 Nov 25, 2021
Python bindings for the Plex API.

Python-PlexAPI Overview Unofficial Python bindings for the Plex API. Our goal is to match all capabilities of the official Plex Web Client. A few of t

Michael Shepanski 931 Jan 07, 2023
Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

PyContribs 326 Dec 28, 2022
Gives criticality score for an open source project

Open Source Project Criticality Score (Beta) This project is maintained by members of the Securing Critical Projects WG. Goals Generate a criticality

Open Source Security Foundation (OpenSSF) 1.1k Dec 23, 2022
Repositorio com arquivos processados da CPI da COVID para facilitar analise

cpi4all Repositorio com arquivos processados da CPI da COVID para facilitar analise Organização No site do senado é possivel encontrar a lista de todo

Breno Rodrigues Guimarães 12 Aug 16, 2021
Repository for my Monika Assistant project

Monika_Assistant Repository for my Monika Assistant project Major changes: Added face tracker Added manual daily log to see how long it takes me to fi

3 Jan 10, 2022
A simple calculator made with tkinter.

Simple Calculator A simple calculator made with tkinter. Requirements None, only you need to have windows 😉 ...Enjoy! Installation Clone this reposit

Abhyush 2 Jan 11, 2022
HogwartsRegister - A Hogwarts Register With Python

A Hogwarts Register Installation download code git clone https://github.com/haor

0 Feb 12, 2022
Simply create JIRA releases based on your github releases

Simply create JIRA releases based on your github releases

8 Jun 17, 2022
LibreMind is a free meditation app made in under 24 hours. It has various meditation, breathwork, and visualization exercises.

libreMind Meditation exercises What is it? LibreMind is a free meditation app made in under 24 hours. It has various meditation, breathwork, and visua

1 May 24, 2022
AIO solution for SSIS students

ssis.bit AIO solution for SSIS students Hardware CircuitPython supports more than 200 different boards. Locally available is the TTGO T8 ESP32-S2 ST77

3 Jun 05, 2022
The semi-complete teardown of Cosmo's Cosmic Adventure.

The semi-complete teardown of Cosmo's Cosmic Adventure.

Scott Smitelli 10 Dec 02, 2022
Python framework to build apps with the GASP metaphor

Gaspium Python framework to build apps with the GASP metaphor This project is part of the Pyrustic Open Ecosystem. Installation | Documentation | Late

5 Jan 01, 2023
The Great Autoencoder Bake Off

The Great Autoencoder Bake Off The companion repository to a post on my blog. It contains all you need to reproduce the results. Features Currently fe

Tilman Krokotsch 61 Jan 06, 2023
An app to automatically take attendance by scanning students' bar coded ID card as they enter the classroom.

Auto Classroom Attendance This application may be run on a PC to automatically scan students' ID card using a generic bar code scanner and output the

1 Nov 10, 2021
Checks for Vaccine Availability at your district and notifies you using E-mail, subscribe to our website.

Vaccine Availability Notifier Project Description Checks for Vaccine Availability at your district and notifies you using E-mail every 10 mins. Kindly

Farhan Hai Khan 19 Jun 03, 2021
Automator anble you to create automations on your system

WELCOME TO AUTOMATOR BETA This programm is able to create automations on your system. This programm is only an experimantal release; infact it works v

Davide 1 Jan 12, 2022
PyDy, short for Python Dynamics, is a tool kit written in the Python

PyDy, short for Python Dynamics, is a tool kit written in the Python programming language that utilizes an array of scientific programs to enable the study of multibody dynamics. The goal is to have

PyDy 307 Jan 01, 2023