When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

Overview

MTLFace

This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework
https://arxiv.org/abs/2103.01520
Abstract: To minimize the effects of age variation in face recognition, previous work either extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features, called age-invariant face recognition (AIFR), or removes age variation by transforming the faces of different age groups into the same age group, called face age synthesis (FAS); however, the former lacks visual results for model interpretation while the latter suffers from artifacts compromising downstream recognition. Therefore, this paper proposes a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn age-invariant identity-related representation while achieving pleasing face synthesis. Specifically, we first decompose the mixed face features into two uncorrelated components---identity- and age-related features---through an attention mechanism, and then decorrelate these two components using multi-task training and continuous domain adaption. In contrast to the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, with a weight-sharing strategy to improve the age smoothness of synthesized faces. In addition, we collect and release a large cross-age face dataset with age and gender annotations to advance AIFR and FAS. Extensive experiments on five benchmark cross-age datasets demonstrate the superior performance of our proposed MTLFace over state-of-the-art methods for AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, showing competitive performance for face recognition in the wild.

example.png

framework

DATASET

  1. Downloading MS1M-ArcFace, CASIA-Webface or test set from insightface.
  2. Extract the jpg images from the mxnet .rec or .bin file according to the comments in the source code like:
python convert_insightface.py --source /home/zzhuang/faces_webface_112x112 --dest /home/zzhuang/casia-webface-112x112-arcface
python convert_insightface.py --bin --source /home/zzhuang/faces_webface_112x112/agedb_30.bin --dest /home/zzhuang/arcface-test-set
  1. Downloading the annotations from Dropbox, which is organized by id filename age gender; 1 for male and 0 for female.

  2. Putting the dataset and annotations into the dataset folder.

REQUIREMENTS

see requirements.txt and run pip install -r requirements.txt.

TRAINING

train AIFR:

python -m torch.distributed.launch --nproc_per_node=8 --master_port=17647 main.py \
    --train_fr --backbone_name ir50 --head_s 64 --head_m 0.35 \
    --weight_decay 5e-4 --momentum 0.9 --fr_age_loss_weight 0.001 --fr_da_loss_weight 0.002 --age_group 7 \
    --gamma 0.1 --milestone 20000 23000 --warmup 1000 --learning_rate 0.1 \
    --dataset_name scaf --image_size 112 --num_iter 36000 --batch_size 64 --amp

train FAS:

python -m torch.distributed.launch --nproc_per_node=8 --master_port=17647 main.py \
    --train_fas --backbone_name ir50 --age_group 7 \
    --dataset_name scaf --image_size 112 --num_iter 36000 --batch_size 64 \
    --d_lr 1e-4 --g_lr 1e-4 --fas_gan_loss_weight 75 --fas_age_loss_weight 10 --fas_id_loss_weight 0.002

If you want to train both tasks, please use apex.

Citation

If you found this code or our work useful please cite us:

@article{huang2020mtlface,
  title={When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework},
  author={Huang, Zhizhong and Zhang, Junping and Shan, Hongming},
  journal={CVPR},
  year={2021},
}

Acknowledgement

As my first CVPR paper, here I would appreciate all my co-authors and four anonymous reviewers for their valuable time, especially the one of them for his or her strong approvement to my work.

Owner
Hzzone
To be talented & positive.
Hzzone
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
Official code for "Bridging Video-text Retrieval with Multiple Choice Questions", CVPR 2022 (Oral).

Bridging Video-text Retrieval with Multiple Choice Questions, CVPR 2022 (Oral) Paper | Project Page | Pre-trained Model | CLIP-Initialized Pre-trained

Applied Research Center (ARC), Tencent PCG 99 Jan 06, 2023
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Sergio Díaz Fernández 1 Jan 13, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022