Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

Overview

LayoutAnalysisEvaluator

Layout Analysis Evaluator for:

Minimal usage: java -jar LayoutAnalysisEvaluator.jar -gt gt_image.png -p prediction_image.png

Parameters list: utility-name

 -gt,--groundTruth <arg>      Ground Truth image 
 -p,--prediction <arg>        Prediction image 
 -o,--original <arg>          (Optional) Original image, to be overlapped with the results visualization
 -j,--json <arg>              (Optional) Json Path, for the DIVAServices JSON output
 -out,--outputPath <arg>      (Optional) Output path (relative to prediction input path)                            
 -dv,--disableVisualization   (Optional)(Flag) Vsualizing the evaluation as image is NOT desired

Note: this also outputs a human-friendly visualization of the results next to the prediction_image.png which can be overlapped to the original image if provided with the parameter -overlap to enable deeper analysis.

Visualization of the results

Along with the numerical results (such as the Intersection over Union (IU), precision, recall,F1) the tool provides a human friendly visualization of the results. Additionally, when desired one can provide the original image and it will be overlapped with the visualization of the results. This is particularly helpful to understand why certain artifacts are created. The three images below represent the three steps: the original image, the visualization of the result and the two overlapped.

Alt text Alt text Alt text

Interpreting the colors

Pixel colors are assigned as follows:

  • GREEN: Foreground predicted correctly
  • YELLOW: Foreground predicted - but the wrong class (e.g. Text instead of Comment)
  • BLACK: Background predicted correctly
  • RED: Background mis-predicted as Foreground
  • BLUE: Foreground mis-predicted as Background

Example of problem hunting

Below there is an example supporting the usefulness of overlapping the prediction quality visualization with the original image. Focus on the red pixels pointed at by the white arrow: they are background pixels mis-classified as foreground. In the normal visualization (left) its not possible to know why would an algorithm decide that in that spot there is something belonging to foreground, as it is clearly far from regular text. However, when overlapped with the original image (right) one can clearly see that in this area there is an ink stain which could explain why the classification algorithm is deceived into thinking these pixel were foreground. This kind of interpretation is obviously not possible without the information provided by the original image like in (right).

Alt text Alt text

Ground Truth Format

The ground truth information needs to be a pixel-label image where the class information is encoded in the blue channel. Red and green channels should be set to 0 with the exception of the boundaries pixels used in the two competitions mentioned above.

For example, in the DIVA-HisDB dataset there are four different annotated classes which might overlap: main text body, decorations, comments and background.

In the pixel-label images the classes are encoded by RGB values as follows:

Red = 0 everywhere (except boundaries)
Green = 0 everywhere

Blue = 0b00...1000 = 0x000008: main text body
Blue = 0b00...0100 = 0x000004: decoration
Blue = 0b00...0010 = 0x000002: comment
Blue = 0b00...0001 = 0x000001: background (out of page)

Note that the GT might contain multi-class labeled pixels, for all classes except for the background. For example:

Blue = 0b...1000 | 0b...0010 = 0b...1010 = 0x00000A : main text body + comment  
Blue = 0b...1000 | 0b...0100 = 0b...1100 = 0x00000C : main text body + decoration
Blue = 0b...0010 | 0b...0100 = 0b...0110 = 0x000006 : comment + decoration

Citing us

If you use our software, please cite our paper as:

@inproceedings{alberti2017evaluation,
    address = {Kyoto, Japan},
    archivePrefix = {arXiv},
    arxivId = {1712.01656},
    author = {Alberti, Michele and Bouillon, Manuel and Ingold, Rolf and Liwicki, Marcus},
    booktitle = {2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)},
    doi = {10.1109/ICDAR.2017.311},
    eprint = {1712.01656},
    isbn = {978-1-5386-3586-5},
    month = {nov},
    pages = {43--47},
    title = {{Open Evaluation Tool for Layout Analysis of Document Images}},
    year = {2017}
}
You might also like...
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

CellProfiler is a open-source application for biological image analysis
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically.

Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled -
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection toolbox based on PyTorch.

Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

Layout Parser is a deep learning based tool for document image layout analysis tasks.
G-Research-Crypto-Competition - Project for passing the ML exam. Dataset took from the competition on the kaggle

G-Research-Crypto-Competition Project for passing the ML exam. Dataset took from

PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

A mathematica expression evaluator with PokemonTypes

A simple mathematical expression evaluator that uses Pokemon types to replace symbols.

The evaluator covering all of the metrics required by tasks within the DUE Benchmark.

DUE Evaluator The repository contains the evaluator covering all of the metrics required by tasks within the DUE Benchmark, i.e., set-based F1 (for KI

Excel-report-evaluator - A simple Python GUI application to aid with bulk evaluation of Microsoft Excel reports.
Excel-report-evaluator - A simple Python GUI application to aid with bulk evaluation of Microsoft Excel reports.

Excel Report Evaluator Simple Python GUI with Tkinter for evaluating Microsoft Excel reports (.xlsx-Files). Usage Start main.py and choose one of the

 Binance Smart Chain Contract Scraper + Contract Evaluator
Binance Smart Chain Contract Scraper + Contract Evaluator

Pulls Binance Smart Chain feed of newly-verified contracts every 30 seconds, then checks their contract code for links to socials.Returns only those with socials information included, and then submits the contract address to TokenSniffer to evaluate contract legitimacy

Binance Smart Chain Contract Scraper + Contract Evaluator
Binance Smart Chain Contract Scraper + Contract Evaluator

Pulls Binance Smart Chain feed of newly-verified contracts every 30 seconds, then checks their contract code for links to socials.Returns only those with socials information included, and then submits the contract address to TokenSniffer to evaluate contract legitimacy

Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

IMGUR5K handwriting set. It is a handwritten in-the-wild dataset, which contains challenging real world handwritten samples from different writers.The dataset is shared as a set of image urls with annotations. This code downloads the images and verifies the hash to the image to avoid data contamination.
Releases(v1.0.0)
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラム

M-LSD-warpPerspective-Example M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラムです。 Requirements OpenCV 3.4.2 or Later tensorflow 2.4.1 or Later Usage 実行方法は以下です。 pytho

KazuhitoTakahashi 9 Oct 14, 2022
An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network

FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a

GeorgeJoe 171 Aug 04, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Microsoft 235 Dec 22, 2022
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
A community-supported supercharged version of paperless: scan, index and archive all your physical documents

Paperless-ngx Paperless-ngx is a document management system that transforms your physical documents into a searchable online archive so you can keep,

5.2k Jan 04, 2023
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 65 Oct 27, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Shape Detection - It's a shape detection project with OpenCV and Python.

Shape Detection It's a shape detection project with OpenCV and Python. Setup pip install opencv-python for doing AI things. pip install simpleaudio fo

1 Nov 26, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022