[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

Overview

New Benchmarks for Learning on Non-Homophilous Graphs

Here are the codes and datasets accompanying the paper:
New Benchmarks for Learning on Non-Homophilous Graphs
Derek Lim (Cornell), Xiuyu Li (Cornell), Felix Hohne (Cornell), and Ser-Nam Lim (Facebook AI).
Workshop on Graph Learning Benchmarks, WWW 2021.
[PDF link]

There are codes to load our proposed datasets, compute our measure of the presence of homophily, and train various graph machine learning models in our experimental setup.

Organization

main.py contains the main experimental scripts.

dataset.py loads our datasets.

models.py contains implementations for graph machine learning models, though C&S (correct_smooth.py, cs_tune_hparams.py) is in separate files. Also, gcn-ogbn-proteins.py contains code for running GCN and GCN+JK on ogbn-proteins. Running several of the GNN models on larger datasets may require at least 24GB of VRAM.

homophily.py contains functions for computing homophily measures, including the one that we introduce in our_measure.

Datasets

Alt text

As discussed in the paper, our proposed datasets are "twitch-e", "yelp-chi", "deezer", "fb100", "pokec", "ogbn-proteins", "arxiv-year", and "snap-patents", which can be loaded by load_nc_dataset in dataset.py by passing in their respective string name. Many of these datasets are included in the data/ directory, but due to their size, yelp-chi, snap-patents, and pokec are automatically downloaded from a Google drive link when loaded from dataset.py. The arxiv-year and ogbn-proteins datasets are downloaded using OGB downloaders. load_nc_dataset returns an NCDataset, the documentation for which is also provided in dataset.py. It is functionally equivalent to OGB's Library-Agnostic Loader for Node Property Prediction, except for the fact that it returns torch tensors. See the OGB website for more specific documentation. Just like the OGB function, dataset.get_idx_split() returns fixed dataset split for training, validation, and testing.

When there are multiple graphs (as in the case of twitch-e and fb100), different ones can be loaded by passing in the sub_dataname argument to load_nc_dataset in dataset.py.

twitch-e consists of seven graphs ["DE", "ENGB", "ES", "FR", "PTBR", "RU", "TW"]. In the paper we test on DE.

fb100 consists of 100 graphs. We only include ["Amherst41", "Cornell5", "Johns Hopkins55", "Penn94", "Reed98"] in this repo, although others may be downloaded from the internet archive. In the paper we test on Penn94.

Alt text

Installation instructions

  1. Create and activate a new conda environment using python=3.8 (i.e. conda create --name non-hom python=3.8)
  2. Activate your conda environment
  3. Check CUDA version using nvidia-smi
  4. In the root directory of this repository, run bash install.sh cu110, replacing cu110 with your CUDA version (i.e. CUDA 11 -> cu110, CUDA 10.2 -> cu102, CUDA 10.1 -> cu101). We tested on Ubuntu 18.04, CUDA 11.0.

Running experiments

  1. Make sure a results folder exists in the root directory.
  2. Our experiments are in the experiments/ directory. There are bash scripts for running methods on single and multiple datasets. Please note that the experiments must be run from the root directory. For instance, to run the MixHop experiments on snap-patents, use:
bash experiments/mixhop_exp.sh snap-patents

Some datasets require specifying a second sub_dataset argument e.g. to run MixHop experiments on the twitch-e, DE sub_dataset, do:

bash experiments/mixhop_exp.sh twitch-e DE

Otherwise, run python main.py --help to see the full list of options for running experiments. As one example, to train a GAT with max jumping knowledge connections on (directed) arxiv-year with 32 hidden channels and 4 attention heads, run:

python main.py --dataset arxiv-year --method gatjk --hidden_channels 32 --gat_heads 4 --directed
Owner
Cornell University Artificial Intelligence
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
🌐 Translation microservice powered by AI

Dot Translate 🌐 A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Client library to download and publish models and other files on the huggingface.co hub

huggingface_hub Client library to download and publish models and other files on the huggingface.co hub Do you have an open source ML library? We're l

Hugging Face 644 Jan 01, 2023
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022