Sorting-Algorithms - All information about sorting algorithm you need and you can visualize the code tracer

Overview

Sorting-Algorithms

This Repo have all information needed to study Sorting Algorithm and there is a tracer to see how the algorithm work

You can see how to algorithm run with two way you can use the button of Generate Nums to generate array and see how the algorithm work or you can enter your numbers that you want to check them by write them in the text box seperated by spaces and use button Use my Numbers to use them to see how the algorithms work

Requirements

For Linux Users only

open your terminal

sudo apt install python3
sudo apt install python3-tk

How to run

Linux

git clone https://github.com/7oSkaaa/Sorting-Algorithms.git
cd Sorting-Algorithms
python3 main.py

Windows

you can download the repo as zip and extract it

OR

you can use cmd

git clone https://github.com/7oSkaaa/Sorting-Algorithms.git

go to the folder of the repo and just double click on main.exe

Video:

Sorting.Algorithms.mp4

You can read the information about each algorithm from the algorithms and go to the tracer and run it to see how the algorithm work

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.

Time Complexity

Best Case is O(n)

Worst Case is O(n2)

Pseudocode

begin BubbleSort(list)

   for all elements of list
      if list[i] > list[i+1]
         swap list[i] and list[i + 1]
   return list
   
end BubbleSort

Code

C++

void Bubble_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n; i++){
        bool is_sorted = true;
        for(int j = i; j < n; j++){
            if(nums[j] < nums[i])
                swap(nums[i], nums[j]), is_sorted = false;
        }
        if(is_sorted) return;
    }
}

Python

def bubble_sort(data):
    size = len(data)
    for i in range(size - 1):
        for j in range(size - i - 1):
            if data[j] > data[j  +1]:
                data[j], data[j + 1] = data[j + 1], data[j]

Java

void bubbleSort(int arr[]){
    int n = arr.length;
    for (int i = 0; i < n - 1; i++)
        for (int j = 0; j < n - i - 1; j++)
            if (arr[j] > arr[j + 1]){
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
}

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering ascending order) from unsorted part and putting it at the beginning. The algorithm maintains two subarrays in a given array.

  1. The subarray which is already sorted.
  2. Remaining subarray which is unsorted. In every iteration of selection sort, the minimum element (considering ascending order) from the unsorted subarray is picked and moved to the sorted subarray.

Time Complexity

Best Case is O(n2)

Worst Case is O(n2)

Pseudocode

begin SelectionSort(list)
    for i from 0 to n - 2 do:
      min = i
      for j from i + 1 to n - 1 do:
        if list[j] < list[min]: Min = j
      swap list[j] and list[min]
end SelectionSort

Code

C++

void Selection_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n; i++){
        int min = i;
        for(int j = i + 1; j < n; j++){
            if(nums[j] < nums[min])
                min = j;
        }
        swap(nums[i], nums[min]);
    }
}

Python

def selection_sort(data, drawData, timeTick):
    for i in range(len(data) - 1):
        Min_Idx = i
        for k in range(i + 1, len(data)):
            if data[k] < data[Min_Idx]:
                Min_Idx = k

Java

void selection_sort(int arr[]){
    int n = arr.length;
    for (int i = 0; i < n - 1; i++){
        int min_idx = i;
        for (int j = i + 1; j < n; j++)
            if (arr[j] < arr[min_idx])
                min_idx = j;
        int temp = arr[min_idx];
        arr[min_idx] = arr[i];
        arr[i] = temp;
    }
}

Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part. Algorithm To sort an array of size n in ascending order:

  1. Iterate from arr[1] to arr[n] over the array.
  2. Compare the current element (key) to its predecessor.
  3. If the key element is smaller than its predecessor, compare it to the elements before. Move the greater elements one position up to make space for the swapped element.

Time Complexity

Best Case is O(n2)

Worst Case is O(n2)

Pseudocode

begin InsertionSort(list)
    for i from 1 to n - 1 do:
      v = list[i]
      j = i - 1
      while j >= 0 and list[j] > v do:
          list[j + 1] = list[j]
          j = j - 1
      list[j + 1] = v
end SelectionSort

Code

C++

void Insertion_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n; i++){
        int value = nums[i], j = i - 1;
        while(j >= 0 && nums[j] > value)
            nums[j + 1] = nums[j], j--;
        nums[j + 1] = value;
    }
}

Python

def insertion_sort(data, drawData, timeTick):
    for i in range(len(data)):
        temp = data[i]
        k = i
        while k > 0 and temp < data[k - 1]:
            data[k] = data[k - 1]; k -= 1
        data[k] = temp

Java

void insertion_sort(int arr[]){
    int n = arr.length;
    for (int i = 1; i < n; ++i) {
        int key = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j =- 1;
        }
        arr[j + 1] = key;
    }
}

Merge Sort

Merge Sort is a Divide and Conquer algorithm. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m + 1..r] are sorted and merges the two sorted sub-arrays into one. See the following C implementation for details.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n x log(n))

Pseudocode

begin MergeSort(list, left, right):
    if left > right 
        return
    mid = (left+right)/2
    mergeSort(list, left, mid)
    mergeSort(list, mid+1, right)
    merge(arr, list, mid, right)
end MergeSort

begin merge(list, left, right)
  mid = (left + right) / 2
  L[left ... mid]
  R[mid + 1 ... right]
  i = 0, j = 0, k = left
  while i < len(L) and j < len(R)
      if L[i] <= R[j]
         list[k] = L[i]
         k++, i++
      else
         list[k] = R[j]
         k++, j++
  while i < len(L) do
      list[k] = L[i]
      k++, i++
  while(j < len(R) do
      list[k] = R[j]
      k++, j++

end merge

Code

C++

void Merge(int l, int m, int r, vector < int >& nums){
    int sz_1 = m - l + 1, sz_2 = r - m;
    vector < int > left(sz_1), right(sz_2);
    for(int i = 0; i < sz_1; i++) left[i] = nums[l + i];
    for(int i = 0; i < sz_2; i++) right[i] = nums[m + 1 + i];
    int i = 0, j = 0, k = l;
    while(i < sz_1 && j < sz_2)
        nums[k++] = (left[i] <= right[j] ? left[i++] : right[j++]);
    while(i < sz_1) nums[k++] = left[i++];
    while(j < sz_2) nums[k++] = right[j++];
}

void Merge_Sort(vector < int >& nums, int l, int r){
    if(l >= r) return;
    int m = l + (r - l) / 2;
    Merge_Sort(nums, l, m);
    Merge_Sort(nums, m + 1, r);
    Merge(l, m, r, nums);
}

Python

def merge(data, start, mid, end, drawData, timeTick):
    L = data[start : mid + 1]
    R = data[mid + 1: end + 1]
    L_idx, R_idx, S_idx = 0, 0, start
    while L_idx < len(L) and R_idx < len(R):
        if L[L_idx] <= R[R_idx]:
            data[S_idx] = L[L_idx]
            L_idx += 1
        else:
            data[S_idx] = R[R_idx]
            R_idx += 1
        S_idx += 1
    while L_idx < len(L):
        data[S_idx] = L[L_idx]
        L_idx += 1; S_idx += 1

    while R_idx < len(R):
        data[S_idx] = R[R_idx]
        R_idx += 1; S_idx += 1


def merge_sort(data, start, end):
    if start < end:
        mid = int((start + end) / 2)
        merge_sort(data, start, mid)
        merge_sort(data, mid + 1, end)
        merge(data, start, mid, end)

Java

void merge(int arr[], int l, int m, int r){
    int n1 = m - l + 1;
    int n2 = r - m;
    int L[] = new int[n1];
    int R[] = new int[n2];
    for (int i = 0; i < n1; ++i)
        L[i] = arr[l + i];
    for (int j = 0; j < n2; ++j)
        R[j] = arr[m + 1 + j];
    int i = 0, j = 0;
    int k = l;
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        }
        else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }
    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }
    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}

void sort(int arr[], int l, int r){
    if (l < r) {
        int m =l+ (r-l)/2;
        sort(arr, l, m);
        sort(arr, m + 1, r);
        merge(arr, l, m, r);
    }
}

Quick Sort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array around the picked pivot. There are many different versions of quickSort that pick pivot in different ways.

  1. Always pick first element as pivot.
  2. Always pick last element as pivot (implemented below)
  3. Pick a random element as pivot.
  4. Pick median as pivot.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n2)

Pseudocode

begin quickSort(arr[], low, high)
    if low < high do
        pi = partition(arr, low, high)
        quickSort(arr, low, pi - 1) 
        quickSort(arr, pi + 1, high)
end quickSort
begin partition (arr[], low, high)
    pivot = arr[high] 
    i = low - 1
    for j from low to high- 1
        if arr[j] < pivot
            i++;    
            swap arr[i] and arr[j]
    swap arr[i + 1] and arr[high])
    return (i + 1)
}
end partition

Code

C++

int Partition(vector < int >& nums, int l, int r){
    int pivot = nums[r], i = l;
    for(int j = l; j < r; j++){
        if(nums[j] <= pivot)
            swap(nums[i++], nums[j]);
    }
    swap(nums[i], nums[r]);
    return i;
}

void Quick_Sort(vector < int >& nums, int l, int r){
    if(l >= r) return;
    int pivot = Partition(nums, l, r);
    Quick_Sort(nums, l, pivot - 1);
    Quick_Sort(nums, pivot + 1, r);
}

Python

def partition(data, start, end, drawData, timeTick):
    i = start + 1
    pivot = data[start]

    for j in range(start + 1, end + 1):
        if data[j] < pivot:
            data[i], data[j] = data[j], data[i]
            i += 1
    data[start], data[i - 1] = data[i - 1], data[start]
    return i - 1

def quick_sort(data, start, end, drawData, timeTick):
    if start < end:
        pivot_position = partition(data, start, end, drawData, timeTick)
        quick_sort(data, start, pivot_position - 1, drawData, timeTick)
        quick_sort(data, pivot_position + 1, end, drawData, timeTick)

Java

int partition (int a[], int start, int end)  {  
    int pivot = a[end];  
    int i = (start - 1);  
    for (int j = start; j <= end - 1; j++)  {  
        if (a[j] < pivot){  
            i++;  
            int t = a[i];  
            a[i] = a[j];  
            a[j] = t;  
        }  
    }  
    int t = a[i + 1];  
    a[i + 1] = a[end];  
    a[end] = t;  
    return (i + 1);  
}  
    
void quick_sort(int a[], int start, int end){  
    if (start < end)  {  
        int p = partition(a, start, end);  
        quick(a, start, p - 1);  
        quick(a, p + 1, end);  
    }
}  

Counting Sort

Counting sort is a sorting technique based on keys between a specific range. It works by counting the number of objects having distinct key values (kind of hashing). Then doing some arithmetic to calculate the position of each object in the output sequence.

Time Complexity

Best Case is O(n + k)

Worst Case is O(n + k)

Pseudocode

begin CountingSort(A)
  for i = 0 to k do
  c[i] = 0
  for j = 0 to n do
  c[A[j]] = c[A[j]] + 1
  for i = 1 to k do
  c[i] = c[i] + c[i-1]
  for j = n - 1 downto 0 do
  B[ c[A[j]]-1 ] = A[j]
  c[A[j]] = c[A[j]] - 1
end CountingSort

Code

C++

void countSort(vector < int >& nums){
    int max = *max_element(nums.begin(), nums.end());
    int min = *min_element(nums.begin(), nums.end());
    int range = max - min + 1;
    vector < int > count(range), output(arr.size());
    for (int i = 0; i < arr.size(); i++)
        count[arr[i] - min]++;
    for (int i = 1; i < count.size(); i++)
        count[i] += count[i - 1];
    for (int i = arr.size() - 1; i >= 0; i--) {
        output[count[arr[i] - min] - 1] = arr[i];
        count[arr[i] - min]--;
    }
    for (int i = 0; i < arr.size(); i++)
        arr[i] = output[i];
}

Python

def counting_sort(data, drawData, timeTick):
    n = max(data) + 1
    count = [0] * n
    for item in data:
        count[item] += 1
    k = 0
    for i in range(n):
        for j in range(count[i]):
            data[k] = i
            k += 1

Java

static void countSort(int[] arr){
  int max = Arrays.stream(arr).max().getAsInt();
  int min = Arrays.stream(arr).min().getAsInt();
  int range = max - min + 1;
  int count[] = new int[range];
  int output[] = new int[arr.length];
  for (int i = 0; i < arr.length; i++)
    count[arr[i] - min]++;
  for (int i = 1; i < count.length; i++)
    count[i] += count[i - 1];
  for (int i = arr.length - 1; i >= 0; i--){
    output[count[arr[i] - min] - 1] = arr[i];
    count[arr[i] - min]--;
  }
  for (int i = 0; i < arr.length; i++)
    arr[i] = output[i];
}

Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to selection sort where we first find the minimum element and place the minimum element at the beginning. We repeat the same process for the remaining elements. Heap Sort Algorithm for sorting in increasing order:

  1. Build a max heap from the input data.
  2. At this point, the largest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of the tree.
  3. Repeat step 2 while the size of the heap is greater than 1.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n x log(n))

Pseudocode

begin Heapify(A as array, n as int, i as int)
    max = i
    leftchild = 2i + 1
    rightchild = 2i + 2
    if (leftchild <= n) and (A[i] < A[leftchild])
        max = leftchild
    else 
        max = i
    if (rightchild <= n) and (A[max]  > A[rightchild])
        max = rightchild
    if (max != i)
        swap(A[i], A[max])
        Heapify(A, n, max)
end Heapify

Heapsort(A as array)
   n = length(A)
   for i = n/2 downto 1   
     Heapify(A, n ,i)
   
   for i = n downto 2
     exchange A[1] with A[i]
     A.heapsize = A.heapsize - 1
     Heapify(A, i, 0)
end Heapsort

Code

C++

void heapify(vector < int >& nums, int i){
    int largest = i, l = 2 * i + 1, r = 2 * i + 2, n = nums.size();
    if (l < n && arr[l] > arr[largest]) largest = l;
    if (r < n && arr[r] > arr[largest]) largest = r;
    if (largest != i) {
        swap(arr[i], arr[largest]);
        heapify(arr, n, largest);
    }
}

void heapSort(vector < int >& nums){
    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, n, i);
    for (int i = n - 1; i > 0; i--) {
        swap(arr[0], arr[i]);
        heapify(arr, i, 0);
    }
}

Python

def heapify(data, n, i):
    largest, left, right = i, 2 * i + 1, 2 * i + 2
    if left < n and data[i] < data[left]:
        largest = left
    if right < n and data[largest] < data[right]:
        largest = right
    if largest != i:
        data[i], data[largest] = data[largest], data[i]
        heapify(data, n, largest)

def heap_sort(data):
    n = len(data)
    for i in range(n - 1, -1, -1):
        heapify(data, n, i)
    for i in range(n - 1, 0, -1):
        data[i], data[0] = data[0], data[i]
        heapify(data, i, 0)

Java

public void heap_sort(int arr[]){
   int n = arr.length;
   for (int i = n / 2 - 1; i >= 0; i--)
      heapify(arr, n, i);
   for (int i = n - 1; i > 0; i--) {
      int temp = arr[0];
      arr[0] = arr[i];
      arr[i] = temp;
      heapify(arr, i, 0);
   }
}
public void heapify(int arr[], int n, int i){
   int largest = i, l = 2 * i + 1, r = 2 * i + 2;
   if (l < n && arr[l] > arr[largest])
      largest = l;
   if (r < n && arr[r] > arr[largest])
      largest = r;
   if (largest != i) {
      int swap = arr[i];
      arr[i] = arr[largest];
      arr[largest] = swap;
      heapify(arr, n, largest);
   }
}

This is a Python implementation of the HMRF algorithm on networks with categorial variables.

Salad Salad is an Open Source Python library to segment tissues into different biologically relevant regions based on Hidden Markov Random Fields. The

1 Nov 16, 2021
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
A selection of a few algorithms used to sort or search an array

Sort and search algorithms This repository has some common search / sort algorithms written in python, I also included the pseudocode of each algorith

0 Apr 02, 2022
The test data, code and detailed description of the AW t-SNE algorithm

AW-t-SNE The test data, code and result of the AW t-SNE algorithm Structure of the folder Datasets: This folder contains two datasets, the MNIST datas

1 Mar 09, 2022
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches

A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches. This module only provides the algorithm that infers a channel mask from some spectral sta

Vincent Morello 6 Nov 29, 2022
Robotic Path Planner for a 2D Sphere World

Robotic Path Planner for a 2D Sphere World This repository contains code implementing a robotic path planner in a 2D sphere world with obstacles. The

Matthew Miceli 1 Nov 19, 2021
This is an Airport Scheduling Time table implemented using Genetic Algorithm

This is an Airport Scheduling Time table implemented using Genetic Algorithm In this The scheduling is performed on the basisi of that no two Air planes are arriving or departing at the same runway a

1 Jan 06, 2022
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algori

Artur Barseghyan 39 Jun 10, 2022
Resilient Adaptive Parallel sImulator for griD (rapid)

Rapid is an open-source software library that implements a novel “parallel-in-time” (Parareal) algorithm and semi-analytical solutions for co-simulation of integrated transmission and distribution sy

Richard Lincoln 7 Sep 07, 2022
Pathfinding algorithm based on A*

Pathfinding V1 What is pathfindingV1 ? This program is my very first path finding program, using python and turtle for graphic rendering. How is it wo

Yan'D 6 May 26, 2022
Python based framework providing a simple and intuitive framework for algorithmic trading

Harvest is a Python based framework providing a simple and intuitive framework for algorithmic trading. Visit Harvest's website for details, tutorials

100 Jan 03, 2023
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
A priority of preferences for teacher assignment problem

Genetic-Algorithm-for-Assignment-Problem A priority of preferences for teacher assignment problem Keywords k-partition; clustering; education 4.0 Abst

hades 2 Oct 31, 2022
An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students.

A timetable optimiser for NUS which uses an evolutionary algorithm to "breed" a timetable suited to your needs.

Nicholas Lee 3 Jan 09, 2022
So far implements A* will add more later

Pathfinding_Visualization Finds the shortest path between two nodes. The light blue path is the shortest path. The black nodes are barriers. Created i

Lukas DeLoach 1 Jan 18, 2022
Silver Trading Algorithm

Silver Trading Algorithm This project was done in the context of the Applied Algorithm Trading Course (FINM 35910) at the University of Chicago. Motiv

Laurent Lanteigne 1 Jan 29, 2022
marching Squares algorithm in python with clean code.

Marching Squares marching Squares algorithm in python with clean code. Tools Python 3 EasyDraw Creators Mohammad Dori Run the Code Installation Requir

Mohammad Dori 3 Jul 15, 2022
A simple python application to visualize sorting algorithms.

Visualize sorting algorithms A simple python application to visualize sorting algorithms. Sort Algorithms Name Function Name O( ) Bubble Sort bubble_s

Duc Tran 3 Apr 01, 2022
zoofs is a Python library for performing feature selection using an variety of nature inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics based to Evolutionary. It's easy to use ,flexible and powerful tool to reduce your feature size.

zoofs is a Python library for performing feature selection using a variety of nature-inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics-based to Evolutionary. It's e

Jaswinder Singh 168 Dec 30, 2022