当前位置:网站首页>Notes on Advanced Mathematics: second derivative of composite function and curvature of solving parametric equation
Notes on Advanced Mathematics: second derivative of composite function and curvature of solving parametric equation
2022-07-19 04:49:00 【Stars depend on the moon】
Capriccio of stars in Mathematics · Skill volume
The second derivative of composite function and the solution of parametric equation curvature
The second derivative of a composite function
Derivation algorithm through function multiplication , After calculation, the result is :
y = y ( x ) , x = x ( t ) x ′ ( t ) = d x d t , y ′ ( t ) = d y d t , x ′ ′ ( t ) = d 2 x d t 2 , y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ ] ⋅ y ′ ′ ( t ) − [ ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ \\ & \frac{d^2y}{dx^2}=[\ \ ]\cdot y''(t)-[\ \ ]\cdot x''(t)\\ \\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \end{aligned} y=y(x) , x=x(t)x′(t)=dtdx , y′(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[ ]⋅y′′(t)−[ ]⋅x′′(t)dx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)dx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)=x′(t)3∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣
The parametric equation solves the curvature
The curvature formula is : k = ∣ y ′ ′ ( 1 + y ′ 2 ) 3 2 ∣ \displaystyle{ k=\left|\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}\right| }% k=∣∣(1+y′2)23y′′∣∣ , It means , The core demand of solving curvature is to solve the value of first-order derivative and second-order derivative .
Because in the process of finding the second derivative of the composite function , We calculate the second derivative by taking x x x, y y y Regard them as t t t Function of , And this also exactly conforms to the form of parametric equation , therefore , For the second derivative of a parametric equation , We still have something to do with 【 The second derivative of a composite function 】 The same conclusion .
Then substitute the curvature formula , After calculation and simplification, we can get :
y = y ( x ) , x = x ( t ) x ′ ( t ) = d x d t , y ′ ( t ) = d y d t , x ′ ′ ( t ) = d 2 x d t 2 , y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 k = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \\ \\ & k = \frac{|x'(t)y''(t)-x''(t)y'(t)|}{(x'(t)^2+y'(t)^2)^{\frac32}} =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3} \\ \end{aligned} y=y(x) , x=x(t)x′(t)=dtdx , y′(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)=x′(t)3∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣k=(x′(t)2+y′(t)2)23∣x′(t)y′′(t)−x′′(t)y′(t)∣=(x′(t)2+y′(t)2)3∣∣∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣∣∣
When substituting into the equation , We can solve the curvature with the help of tabular parametric equation ( Means of substituting values ),
follow 【 Cross multiply and subtract , Square sum open root sign 】 Principles ,
| ′ ' ′ | ′ ′ '' ′′ | |
|---|---|---|
| x x x | x ′ ( t ) = x ′ ( t 0 ) x'(t)=x'(t_0) x′(t)=x′(t0) | x ′ ′ ( t ) = x ′ ′ ( t 0 ) x''(t)=x''(t_0) x′′(t)=x′′(t0) |
| y y y | y ′ ( t ) = y ′ ( t 0 ) y'(t)=y'(t_0) y′(t)=y′(t0) | y ′ ′ ( t ) = y ′ ′ ( t 0 ) y''(t)=y''(t_0) y′′(t)=y′′(t0) |
Take the title as an example :
curve { x = t 2 + 2 t y = 3 ln t The upper corresponds to t = 1 The curvature at the point of is curve \left\{\begin{array}{l}x=t^{2}+2 t \\ y=3 \ln t\end{array}\right.\ The upper corresponds to \ t=1\ The curvature at the point of is curve { x=t2+2ty=3lnt The upper corresponds to t=1 The curvature at the point of is
The answer process :
k = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 = ∣ ∣ ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 ( Just write this on draft paper ) k =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}= \frac{\left|\left|\begin{array}{ll} & \\ & \ \ \ \ \ \ \ \ \ \ \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}\ \ ( Just write this on draft paper ) k=(x′(t)2+y′(t)2)3∣∣∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣∣∣=(x′(t)2+y′(t)2)3∣∣∣∣ ∣∣∣∣ ( Just write this on draft paper )
| t=1 | ′ ' ′ | ′ ′ '' ′′ |
|---|---|---|
| x x x | 2 t + 2 = 4 2t+2=4 2t+2=4 | 2 2 2 |
| y y y | 3 / t = 3 3/t=3 3/t=3 | − 3 / t 2 = − 3 -3/t^2=-3 −3/t2=−3 |
∣ 4 2 3 − 3 ∣ = − 18 → 18 4 2 + 3 2 = 5 → 5 3 = 125 k = 18 125 \begin{aligned} & \left|\begin{array}{ll} 4 & \ \ \ 2 \\ 3 & -3 \end{array}\right| = -18 \rightarrow \ 18\\ \\ & \sqrt{4^2+3^2}=5\ \rightarrow\ 5^3=125\\ \\ & k=\frac{\ \ 18}{\ \ 125} \end{aligned} ∣∣43 2−3∣∣=−18→ 1842+32=5 → 53=125k= 125 18
The answer is over .
Thank you very much : Formula derivation and tabular method are inspired by C C L CCL CCL .
边栏推荐
- TiDB 性能优化概述
- [TA frost wolf \u may - hundred people plan] Figure 2.5 bump mapping
- 万文多图之Word高效插入参考文献
- Using everything to clean up junk files
- 【TA-霜狼_may-《百人计划》】图形2.5 Bump Mapping
- 高仿网易云音乐UI的微信小程序源码
- Codeforces Round #419 (Div. 1)B - Karen and Test
- Golang reverse slice code example
- 网址在线封装APK系统源码
- Emqx pressure test tread pit for your reference
猜你喜欢
![Money making master applet [latest version 5.9.9] mall / instant withdrawal of commission / distribution promotion / phone recharge / is meituan hungry for takeout](/img/8b/29027c2dee4ef764bb2e4b5b499a23.jpg)
Money making master applet [latest version 5.9.9] mall / instant withdrawal of commission / distribution promotion / phone recharge / is meituan hungry for takeout

Unit UMP Packaging Black Screen issue Summary

赚钱大师小程序【最新版5.9.9】商城/佣金即时提现/分销推广/话费充值/美团饿了么外卖

TiDB 性能优化概述

Reproduction of XOR and encryption decryption

使用小丸工具箱进行极限视频压缩
![Fudan micro fmql (domestic zynq) [PS of IAR bare metal development] - non byte aligned access](/img/e7/8349da2c240ac8f51524e5e51bd4d6.png)
Fudan micro fmql (domestic zynq) [PS of IAR bare metal development] - non byte aligned access
![[fuel cell] simulation of fuel cell system control strategy based on Simulink](/img/c8/a8715dd5d57533208cfb4dd918b9e7.png)
[fuel cell] simulation of fuel cell system control strategy based on Simulink

‘ionic‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。

一款好用的网络骗子举报系统无加密版本源码
随机推荐
Water and electricity meter reading and recharge management system in Colleges and universities in property community
[FPGA tutorial case 27] realize dual port RAM ping-pong structure through Verilog
【燃料电池】基于simulink的燃料电池系统控制策略仿真
复旦微FMQL(国产Zynq) 【IAR裸机开发之PS】——非字节对齐访问
N-Beats模型于2020年发布,并且优于M4比赛的获胜者3%!
thinkphp 官网教程
JS中substr与substring的区别
Fudan micro fmql (domestic zynq) [PS of IAR bare metal development] - non byte aligned access
【TA-霜狼_may-《百人计划》】图形2.5 Bump Mapping
C语言动态内存开辟和柔性数组
使用小丸工具箱进行极限视频压缩
Minio installation, deployment and use
Masm32 writer
Construction and application of knowledge map de (VII): large scale knowledge map pre training
py3 redis通用调用
有望取代Deepfake?揭秘今年超火的NeRF技
Policy mode replaces if else
Rearrange data according to date JS
PY3 redis general call
Demo analysis of sliding conflict external interception method