当前位置:网站首页>Notes on Advanced Mathematics: second derivative of composite function and curvature of solving parametric equation
Notes on Advanced Mathematics: second derivative of composite function and curvature of solving parametric equation
2022-07-19 04:49:00 【Stars depend on the moon】
Capriccio of stars in Mathematics · Skill volume
The second derivative of composite function and the solution of parametric equation curvature
The second derivative of a composite function
Derivation algorithm through function multiplication , After calculation, the result is :
y = y ( x ) , x = x ( t ) x ′ ( t ) = d x d t , y ′ ( t ) = d y d t , x ′ ′ ( t ) = d 2 x d t 2 , y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ ] ⋅ y ′ ′ ( t ) − [ ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ \\ & \frac{d^2y}{dx^2}=[\ \ ]\cdot y''(t)-[\ \ ]\cdot x''(t)\\ \\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \end{aligned} y=y(x) , x=x(t)x′(t)=dtdx , y′(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[ ]⋅y′′(t)−[ ]⋅x′′(t)dx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)dx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)=x′(t)3∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣
The parametric equation solves the curvature
The curvature formula is : k = ∣ y ′ ′ ( 1 + y ′ 2 ) 3 2 ∣ \displaystyle{ k=\left|\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}\right| }% k=∣∣(1+y′2)23y′′∣∣ , It means , The core demand of solving curvature is to solve the value of first-order derivative and second-order derivative .
Because in the process of finding the second derivative of the composite function , We calculate the second derivative by taking x x x, y y y Regard them as t t t Function of , And this also exactly conforms to the form of parametric equation , therefore , For the second derivative of a parametric equation , We still have something to do with 【 The second derivative of a composite function 】 The same conclusion .
Then substitute the curvature formula , After calculation and simplification, we can get :
y = y ( x ) , x = x ( t ) x ′ ( t ) = d x d t , y ′ ( t ) = d y d t , x ′ ′ ( t ) = d 2 x d t 2 , y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 k = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \\ \\ & k = \frac{|x'(t)y''(t)-x''(t)y'(t)|}{(x'(t)^2+y'(t)^2)^{\frac32}} =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3} \\ \end{aligned} y=y(x) , x=x(t)x′(t)=dtdx , y′(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)=x′(t)3∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣k=(x′(t)2+y′(t)2)23∣x′(t)y′′(t)−x′′(t)y′(t)∣=(x′(t)2+y′(t)2)3∣∣∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣∣∣
When substituting into the equation , We can solve the curvature with the help of tabular parametric equation ( Means of substituting values ),
follow 【 Cross multiply and subtract , Square sum open root sign 】 Principles ,
| ′ ' ′ | ′ ′ '' ′′ | |
|---|---|---|
| x x x | x ′ ( t ) = x ′ ( t 0 ) x'(t)=x'(t_0) x′(t)=x′(t0) | x ′ ′ ( t ) = x ′ ′ ( t 0 ) x''(t)=x''(t_0) x′′(t)=x′′(t0) |
| y y y | y ′ ( t ) = y ′ ( t 0 ) y'(t)=y'(t_0) y′(t)=y′(t0) | y ′ ′ ( t ) = y ′ ′ ( t 0 ) y''(t)=y''(t_0) y′′(t)=y′′(t0) |
Take the title as an example :
curve { x = t 2 + 2 t y = 3 ln t The upper corresponds to t = 1 The curvature at the point of is curve \left\{\begin{array}{l}x=t^{2}+2 t \\ y=3 \ln t\end{array}\right.\ The upper corresponds to \ t=1\ The curvature at the point of is curve { x=t2+2ty=3lnt The upper corresponds to t=1 The curvature at the point of is
The answer process :
k = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 = ∣ ∣ ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 ( Just write this on draft paper ) k =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}= \frac{\left|\left|\begin{array}{ll} & \\ & \ \ \ \ \ \ \ \ \ \ \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}\ \ ( Just write this on draft paper ) k=(x′(t)2+y′(t)2)3∣∣∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣∣∣=(x′(t)2+y′(t)2)3∣∣∣∣ ∣∣∣∣ ( Just write this on draft paper )
| t=1 | ′ ' ′ | ′ ′ '' ′′ |
|---|---|---|
| x x x | 2 t + 2 = 4 2t+2=4 2t+2=4 | 2 2 2 |
| y y y | 3 / t = 3 3/t=3 3/t=3 | − 3 / t 2 = − 3 -3/t^2=-3 −3/t2=−3 |
∣ 4 2 3 − 3 ∣ = − 18 → 18 4 2 + 3 2 = 5 → 5 3 = 125 k = 18 125 \begin{aligned} & \left|\begin{array}{ll} 4 & \ \ \ 2 \\ 3 & -3 \end{array}\right| = -18 \rightarrow \ 18\\ \\ & \sqrt{4^2+3^2}=5\ \rightarrow\ 5^3=125\\ \\ & k=\frac{\ \ 18}{\ \ 125} \end{aligned} ∣∣43 2−3∣∣=−18→ 1842+32=5 → 53=125k= 125 18
The answer is over .
Thank you very much : Formula derivation and tabular method are inspired by C C L CCL CCL .
边栏推荐
- EasyExcel简单使用
- 力扣刷题02(三数之和+最大子序和+二叉树最近公共祖先)
- 拥抱声明式UI
- 'ionic' is not an internal or external command, nor is it a runnable program or batch file.
- Database and the future of open source
- Minio installation, deployment and use
- mysql优化
- MySQL one line to many lines (split according to specific symbols)
- Pytorch image models (Timm) library
- TCP/IP 协议
猜你喜欢

Blessing for the elderly popular short video wechat applet source code download support traffic master

Real time Bi (IV) low cost data quasi real time processing idea

PowerDesigner displays comment comments

Simple UI funny text conversion Emoji expression wechat applet supports sentence word conversion_ Source code

简洁UI好玩的文字转换emoji表情微信小程序支持句子词语转换_源码

Load balancer ribbon practice

【FPGA教程案例27】通过Verilog实现双口RAM乒乓结构

MySQL表的查询进阶

Redis简介

EMQX 压力测试踩得坑供大家参考
随机推荐
Demo analysis of sliding conflict external interception method
Construction and application of knowledge atlas de (V): knowledge reasoning
高等数学笔记:关于等价无穷小替换的一个猜想
知识图谱de构建与应用(五):知识推理
Project team summer vacation summary 02
记录一次存储过程批量修改表结构
EMQX 压力测试踩得坑供大家参考
赚钱大师小程序【最新版5.9.9】商城/佣金即时提现/分销推广/话费充值/美团饿了么外卖
根据日期重新排列数据js
对于每一个 Provider 实例都会维护多个连接
[FPGA tutorial case 27] realize dual port RAM ping-pong structure through Verilog
[fuel cell] simulation of fuel cell system control strategy based on Simulink
Pytorch image models (Timm) library
接口的参数返回封装类Result
Wildfly: how to call EJBs from EJBs located in another application
MySQL必知必会!!!看这一篇就足够了!!!
【TA-霜狼_may-《百人计划》】美术2.1 DCC工具链与引擎工具链
mysql优化
渗透测试 10 --- 扫描 web目录 (dirb、wfuzz、wpscan、nikto)
使用循环语句制作登录程序