Handwritten_Text_Recognition

Overview

Deep Learning framework for Line-level Handwritten Text Recognition

Short presentation of our project

  1. Introduction

  2. Installation
    2.a Install conda environment
    2.b Download databases

    • IAM dataset
    • ICFHR 2014 dataset
  3. How to use
    3.a Make predictions on unlabelled data using our best networks
    3.b Train and test a network from scratch
    3.c Test a model without retraining it

  4. References

  5. Contact

1. Introduction

This work was an internship project under Mathieu Aubry's supervision, at the LIGM lab, located in Paris.

In HTR, the task is to predict a transcript from an image of a handwritten text. A commonly used structure for this task is Convolutional Recurrent Neural Networks (CRNN). One CRNN network consists of a feature extractor (often with convolutional layers), followed by a recurrent network (LSTM).

This github provides a framework to train and test CRNN networks on handwritten grayscale line-level datasets. This github also provides code to generate predictions on an unlabelled, line-level, grayscale line-level dataset. There are several options for the structure of the CRNN used, image preprocessing, dataset used, data augmentation.

alt text

2. Installation

Prerequisites

Make sure you have Anaconda installed (version >= to 4.7.10, you may not be able to install correct dependencies if older). If not, follow the installation instructions provided at https://docs.anaconda.com/anaconda/install/.

Also pull the git.

2.a Download and activate conda environment

Once in the git folder on your machine, run the command lines :

conda env create -f HTR_environment.yml
conda activate HTR 

2.b Download databases

You will only need to download these databases if you want to train your own network from scratch. The framework is built to train a network on one of these 2 datasets : IAM and ICFHR2014 HTR competition. [ADD REF TO SLIDES]

  • Before downloading IAM dataset, you need to register on this website. Once that's done, you need to download :

    • The 'lines' folder at this link.
    • The 'split' folder at this link.
    • The 'lines.txt' file at this link.
  • For ICFHR2014 dataset, you need to download the 'BenthamDatasetR0-GT' folder at this link.

Make sure to download the two databases in the same folder. Structure must be

Your data folder / 
    IAM/
        lines.txt
        lines/
        split/
            trainset.txt
            testset.txt
            validationset1.txt
            validationset2.txt
            
    ICFHR2014/
        BenthamDatasetR0-GT/ 

    Your own dataset/

3. How to use

3.a Make predictions on your own unlabelled dataset

Running this code will use model stored at model_path to make predictions on images stored in data_path. The predictions will be stored in predictions.txt in data_path folder.

python lines_predictor.py --data_path datapath  --model_path ./trained_networks/IAM_model_imgH64.pth --imgH 64

/!\ Make sure that each image in the data folder has a unique file name and all images are in .jpg form. When you use our trained model with imgH as 64 (i.e. IAM_model_imgH64.pth), you have to set the argument --imgH as 64.

3.b Train a network from scratch

python train.py --dataset dataset  --tr_data_path data_dir --save_model_path path

Before running the code, make sure that you change ROOT_PATH variable at the beginning of params.py to the path of the folder you want to save your models in. Main arguments :

  • --dataset: name of the dataset to train and test on. Supported values are ICFHR2014 and IAM.
  • --tr_data_path: location of the train dataset folder on local machine. See section [??] for downloading datasets.
  • --save_model_path: path of the folder where model will be saved if params.save is set to True.

Main learning arguments :

  • --data_aug: If set to True, will apply random affine data transformation to the training images.

  • --optimizer: Which optimizer to use. Supported values are rmsprop, adam, adadelta, and sgd. We recommend using RMSprop, which got best results in our experiments. See params.py for optimizer-specific parameters.

  • --epochs : Number of training epochs

  • --lr: Learning rate at the beginning of training.

  • --milestones: List of the epochs at which the learning rate will be divided by 10.

  • feat_extractor: Structure to use for the feature extractor. Supported values are resnet18, custom_resnet, and conv.

    • resnet18 : standard structure of resnet18.
    • custom_resnet: variant of resnet18 that we tuned for our experiments.
    • conv: Use this option if you want to use a purely convolutional feature extractor and not a residual one. See conv parameters in params.py to choose conv structure.

3.c Test a model without retraining it

Running this code will compute the average CER and WER of model stored at pretrained_model path on the testing set of chosen dataset.

python train.py --train '' --save '' --pretrained_model model_path --dataset dataset --tr_data_path data_path 

Main arguments :

  • --pretrained_model: path to state_dict of pretrained model.
  • --dataset: Which dataset to test on. Supported values are ICFHR2014 and IAM.
  • --tr_data_path: path to the dataset folder (see section [??])

4. References

Graves et al. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks
Sánchez et al. A set of benchmarks for Handwritten Text Recognition on historical documents
Dutta et al. Improving CNN-RNN Hybrid Networks for Handwriting Recognition

U.-V. Marti, H. Bunke The IAM-database: an English sentence database for offline handwriting recognition

https://github.com/Holmeyoung/crnn-pytorch
https://github.com/georgeretsi/HTR-ctc
Synthetic line generator : https://github.com/monniert/docExtractor (see paper for more information)

5. Contact

If you have questions or remarks about this project, please email us at [email protected] and [email protected].

list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

Chandru 2 Feb 20, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
Usando o Amazon Textract como OCR para Extração de Dados no DynamoDB

dio-live-textract2 Repositório de código para o live coding do dia 05/10/2021 sobre extração de dados estruturados e gravação em banco de dados a part

hugoportela 0 Jan 19, 2022
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
Localization of thoracic abnormalities model based on VinBigData (top 1%)

Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto

33 May 24, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
Handwritten Number Recognition using CNN and Character Segmentation

Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an

Sparsha Saha 17 Aug 25, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
A real-time dolly zoom camera effect

Dolly-Zoom I've always been amazed by the gradual perspective change of dolly zoom, and I have some experience in python and OpenCV, so I decided to c

Dylan Kai Lau 52 Dec 08, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022