A curated list of papers, code and resources pertaining to image composition

Overview

Awesome Image Composition Awesome

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Surveys

  • Li Niu, Wenyan Cong, Liu Liu, Yan Hong, Bo Zhang, Jing Liang, Liqing Zhang: "Making Images Real Again: A Comprehensive Survey on Deep Image Composition." arXiv preprint arXiv:2106.14490 (2021). [arXiv]

Papers

Image blending

  • Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang: "GP-GAN: Towards Realistic High-Resolution Image Blending." ACM MM (2019) [arXiv] [code]
  • Lingzhi Zhang, Tarmily Wen, Jianbo Shi: "Deep Image Blending." WACV (2020) [pdf] [arXiv] [code]

Image harmonization

  • Jun Ling, Han Xue, Li Song, Rong Xie, Xiao Gu: "Region-Aware Adaptive Instance Normalization for Image Harmonization." CVPR (2021) [pdf] [supp] [arXiv] [code].
  • Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng: "Intrinsic Image Harmonization." CVPR (2021) [pdf] [supp] [code].
  • Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, Liqing Zhang: "BargainNet: Background-Guided Domain Translation for Image Harmonization." ICME (2021) [arXiv] [code].
  • Konstantin Sofiiuk, Polina Popenova, Anton Konushin: "Foreground-aware Semantic Representations for Image Harmonization." WACV (2021) [pdf] [supp] [arXiv] [code]
  • Guoqing Hao, Satoshi Iizuka, Kazuhiro Fukui: "Image Harmonization with Attention-based Deep Feature Modulation." BMVC (2020) [pdf] [supp] [code]
  • Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, Liqing Zhang: "DoveNet: Deep Image Harmonization via Domain Verification." CVPR (2020) [pdf] [supp] [arXiv] [code].
  • Xiaodong Cun, Chi-Man Pun: "Improving the Harmony of the Composite Image by Spatial-Separated Attention Module." IEEE Trans. Image Process. 29: 4759-4771 (2020) [pdf] [arXiv] [code]
  • Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, Ming-Hsuan Yang: "Deep Image Harmonization." CVPR (2017) [pdf] [supp] [arXiv] [code]

Shadow generation

  • Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao: "ARshadowGAN: Shadow generative adversarial network for augmented reality in single light scenes." CVPR (2020) [pdf] [code].

  • Shuyang Zhang, Runze Liang, Miao Wang: "ShadowGAN: Shadow synthesis for virtual objects with conditional adversarial networks." Computational Visual Media (2019) [pdf].

  • Fangneng Zhan, Shijian Lu, Changgong Zhang, Feiying Ma, Xuansong Xie: "Adversarial Image Composition with Auxiliary Illumination." ACCV (2020) [pdf].

Object placement and spatial transformation

  • Lingzhi Zhang, Tarmily Wen, Jie Min, Jiancong Wang, David Han, Jianbo Shi: "Learning Object Placement by Inpainting for Compositional Data Augmentation" ECCV (2020) [pdf]

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition" International Journal of Computer Vision (2020) [arXiv] [code]

  • Song-Hai Zhang, Zhengping Zhou, Bin Liu, Xi Dong, Peter Hall: "What and Where: A Context-based Recommendation System for Object Insertion" Computational Visual Media (2020) [arXiv]

  • Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Visesh Chari: "Learning to Generate Synthetic Data via Compositing" CVPR (2019) [arXiv]

  • Haoshu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yonglu Li, Cewu Lu: "InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting" ICCV (2019) [arXiv] [code]

  • Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, Simon Lucey: "ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing" CVPR (2018) [arXiv] [code]

  • Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz: "Context-Aware Synthesis and Placement of Object Instances" NeurIPS (2018) [arXiv] [code]

  • Fuwen Tan, Crispin Bernier, Benjamin Cohen, Vicente Ordonez, Connelly Barnes: "Where and Who? Automatic Semantic-Aware Person Composition" WACV (2018) [arXiv][code]

  • Tal Remez, Jonathan Huang, Matthew Brown: "learning to segment via cut-and-paste" ECCV (2018) [arXiv] [code]

Occlusion

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition." IJCV (2020) [arXiv] [code]
  • Fangneng Zhan, Jiaxing Huang, Shijian Lu, "Hierarchy Composition GAN for High-fidelity Image Synthesis." Transactions on cybernetics (2021) [arXiv]

Datasets

  • iHarmony4 (image harmonization): It contains four subdatasets: HCOCO, HAdobe5k, HFlickr, Hday2night, with a total of 73,146 pairs of unharmonized images and harmonized images. [pdf] [link]
  • GMSDataset (image harmonization): It contains 183 images with image resolution of 1940*1440. It consists of 16 different objects and for each object, one source image and 11 target images in different background scenes and illumination conditions are captured. [pdf] [link] (access code: ekn2)
  • HVIDIT (image harmonization): A dataset built upon VIDIT (Virtual Image Dataset for Illumination Transfer) dataset for image harmonization. It contains 3007 images of 276 scenes for training and 329 images of 24 scenes for testing. [pdf] [link]
  • RHHarmony (image harmonization): A rendered image harmonization dataset, which contains 15000 ground-truth rendered images and has the potential to generate 135000 composite rendered images. [pdf] [link]
  • Shadow-AR (shadow generation): It contains 3,000 quintuples, Each quintuple consists of 5 images 640×480 resolution: a synthetic image without the virtual object shadow and its corresponding image containing the virtual object shadow, a mask of the virtual object, a labeled real-world shadow matting and its corresponding labeled occluder. [pdf] [link]
  • DESOBA (shadow generation): It contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. [pdf] [link]
  • OPA (object placement): It contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. [pdf] [link]

Other resources

Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t

QichaoWu 49 Dec 24, 2022
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Rizky Dermawan 4 Mar 10, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023