Fiber implements an proof-of-concept Python decorator that rewrites a function

Related tags

Miscellaneousfiber
Overview

Fiber

Fiber implements an proof-of-concept Python decorator that rewrites a function so that it can be paused and resumed (by moving stack variables to a heap frame and adding if statements to simulate jumps/gotos to specific lines of code).

Then, using a trampoline function that simulates the call stack on the heap, we can call functions that recurse arbitrarily deeply without stack overflowing (assuming we don't run out of heap memory).

cache = {}

@fiber.fiber(locals=locals())
def fib(n):
    assert n >= 0
    if n in cache:
        return cache[n]
    if n == 0:
        return 0
    if n == 1:
        return 1
    cache[n] = fib(n-1) + fib(n-2)
    return cache[n]

print(sys.getrecursionlimit())  # 1000 by default

# https://www.wolframalpha.com/input/?i=fib%281010%29+mod+10**5
print(trampoline.run(fib, [1010]) % 10 ** 5) # 74305

Please do not use this in production.

TOC

How it works

A quick refresher on the call stack: normally, when some function A calls another function B, A is "paused" while B runs to completion. Then, once B finishes, A is resumed.

In order to move the call stack to the heap, we need to transform function A to (1) store all variables on the heap, and (2) be able to resume execution at specific lines of code within the function.

The first step is easy: we rewrite all local loads and stores to instead load and store in a frame dictionary that is passed into the function. The second is more difficult: because Python doesn't support goto statements, we have to insert if statements to skip the code prefix that we don't want to execute.

There are a variety of "special forms" that cannot be jumped into. These we must handle by rewriting them into a form that we do handle.

For example, if we recursively call a function inside a for loop, we would like to be able to resume execution on the same iteration. However, when Python executes a for loop on an non-iterator iterable it will create a new iterator every time. To handle this case, we rewrite for loops into the equivalent while loop. Similarly, we must rewrite boolean expressions that short circuit (and, or) into the equivalent if statements.

Lastly, we must replace all recursive calls and normal returns by instead returning an instruction to a trampoline to call the child function or return the value to the parent function, respectively.

To recap, here are the AST passes we currently implement:

  1. Rewrite special forms:
    • for_to_while: Transforms for loops into the equivalent while loops.
    • promote_while_cond: Rewrites the while conditional to use a temporary variable that is updated every loop iteration so that we can control when it is evaluated (e.g. if the loop condition includes a recursive call).
    • bool_exps_to_if: Converts and and or expressions into the equivalent if statements.
  2. promote_to_temporary: Assigns the results of recursive calls into temporary variables. This is necessary when we make multiple recursive calls in the same statement (e.g. fib(n-1) + fib(n-2)): we need to resume execution in the middle of the expression.
  3. remove_trivial_temporaries: Removes temporaries that are assigned to only once and are directly assigned to some other variable, replacing subsequent usages with that other variable. This helps us detect tail calls.
  4. insert_jumps: Marks the statement after yield points (currently recursive calls and normal returns) with a pc index, and inserts if statements so that re-execution of the function will resume at that program counter.
  5. lift_locals_to_frame: Replaces loads and stores of local variables to loads and stores in the frame object.
  6. add_trampoline_returns: Replaces places where we must yield (recursive calls and normal returns) with returns to the trampoline function.
  7. fix_fn_def: Rewrites the function defintion to take a frame parameter.

See the examples directory for functions and the results after each AST pass. Also, see src/trampoline_test.py for some test cases.

Performance

A simple tail-recursive function that computes the sum of an array takes about 10-11 seconds to compute with Fiber. 1000 iterations of the equivalent for loop takes 7-8 seconds to compute. So we are slower by roughly a factor of 1000.

lst = list(range(1, 100001))

# fiber
@fiber.fiber(locals=locals())
def sum(lst, acc):
    if not lst:
        return acc
    return sum(lst[1:], acc + lst[0])

# for loop
total = 0
for i in lst:
    total += i

print(total, trampoline.run(sum, [lst, 0]))  # 5000050000, 5000050000

We could improve the performance of the code by eliminating redundant if checks in the generated code. Also, as we statically know the stack variables, we can use an array for the stack frame and integer indexes (instead of a dictionary and string hashes + lookups). This should improve the performance significantly, but there will still probably be a large amount of overhead.

Another performance improvement is to inline the stack array: instead of storing a list of frames in the trampoline, we could variables directly in the stack. Again, we can compute the frame size statically. Based on some tests in a handwritten JavaScript implementation, this has the potential to speed up the code by roughly a factor of 2-3, at the cost of a more complex implementation.

Limitations

  • The transformation works on the AST level, so we don't support other decorators (for example, we cannot use functools.cache in the above Fibonacci example).

  • The function can only access variables that are passed in the locals= argument. As a consequence of this, to resolve recursive function calls, we maintain a global mapping of all fiber functions by name. This means that fibers must have distinct names.

  • We don't support some special forms (ternaries, comprehensions). These can easily be added as a rewrite transformation.

  • We don't support exceptions. This would require us to keep track of exception handlers in the trampoline and insert returns to the trampoline to register and deregister handlers.

  • We don't support generators. To add support, we would have to modify the trampoline to accept another operation type (yield) that sends a value to the function that called next(). Also, the trampoline would have to support multiple call stacks.

Possible improvements

  • Improve test coverage on some of the AST transformations.
    • remove_trivial_temporaries may have a bug if the variable that it is replaced with is reassigned to another value.
  • Support more special forms (comprehensions, generators).
  • Support exceptions.
  • Support recursive calls that don't read the return value.

Questions

Why didn't you use Python generators?

It's less interesting as the transformations are easier. Here, we are effectively implementing generators in userspace (i.e. not needing VM support); see the answer to the next question for why this is useful.

Also, people have used generators to do this; see one recent generator example.

Why did you write this?

  • A+ project for CS 61A at Berkeley. During the course, we created a Scheme interpreter. The extra credit question we to replace tail calls in Python with a return to a trampoline, with the goal that tail call optimization in Python would let us evaluate tail calls to arbitrary depth in Scheme, in constant space.

    The test cases for the question checked whether interpreting tail-call recursive functions in Scheme caused a Python stack overflow. Using this Fiber implementation, (1) without tail call optimization in our trampoline, we would still be able to pass the test cases (we just wouldn't use constant space) and (2) we can now evaluate any Scheme expression to arbitrary depth, even if they are not in tail form.

  • The React framework has an a bug open which explores a compiler transform to rewrite JavaScript generators to a state machine so that recursive operations (render, reconcilation) can be written more easily. This is necessary because some JavaScript engines still don't support generators.

    This project basically implements a rough version of that compiler transform as a proof of concept, just in Python. https://github.com/facebook/react/pull/18942

Contributing

See CONTRIBUTING.md for more details.

License

Apache 2.0; see LICENSE for more details.

Disclaimer

This is a personal project, not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
Tyler Hou
Tyler Hou
Hy - A dialect of Lisp that's embedded in Python

Hy Lisp and Python should love each other. Let's make it happen. Hy is a Lisp dialect that's embedded in Python. Since Hy transforms its Lisp code int

Hy Society 4.4k Jan 02, 2023
Developing and Comparing Vision-based Algorithms for Vision-based Agile Flight

DodgeDrone: Vision-based Agile Drone Flight (ICRA 2022 Competition) Would you like to push the boundaries of drone navigation? Then participate in the

Robotics and Perception Group 115 Dec 10, 2022
pgvector support for Python

pgvector-python pgvector support for Python Great for online recommendations 🎉 Supports Django, SQLAlchemy, Psycopg 2, Psycopg 3, and asyncpg Install

Andrew Kane 37 Dec 20, 2022
A repository containing useful resources needed to complete the SUSE Scholarship Challenge #UdacitySUSEScholars #poweredbySUSE

SUSE-udacity-cloud-native-scholarship A repository containing useful resources needed to complete the SUSE Scholarship Challenge #UdacitySUSEScholars

Nandini Proothi 11 Dec 02, 2021
Kivy program for identification & rotation sensing of objects on multi-touch tables.

ObjectViz ObjectViz is a multitouch object detection solution, enabling you to create physical markers out of any reliable multitouch solution. It's e

TangibleDisplay 8 Apr 04, 2022
Simply create JIRA releases based on your github releases

Simply create JIRA releases based on your github releases

8 Jun 17, 2022
A tool to help you to do the monthly reading requirements

Monthly Reading Requirement Auto ⚙️ A tool to help you do the monthly reading requirements Important ⚠️ Some words can't be translated Links: Synonym

Julian Jauk 2 Oct 31, 2021
💉 🔍 VaxFinder - Backend The backend for the Vaccine Hunters Finder tool.

💉 🔍 VaxFinder - Backend The backend for the Vaccine Hunters Finder tool. Development Prerequisites Python 3.8 Poetry: A tool for dependency manageme

Vaccine Hunters Canada 32 Jan 19, 2022
A project to explore and provide useful code for Mango Markets

🥭 Mango Explorer A project to explore and provide useful code for Mango Markets

Blockworks Foundation 160 Dec 19, 2022
Discover and load entry points from installed packages

Entry points are a way for Python packages to advertise objects with some common interface. The most common examples are console_scripts entry points,

Thomas Kluyver 69 Jul 05, 2022
Make your functions return something meaningful, typed, and safe!

Make your functions return something meaningful, typed, and safe! Features Brings functional programming to Python land Provides a bunch of primitives

dry-python 2.5k Jan 03, 2023
Create a simple program by applying the use of class

TUGAS PRAKTIKUM 8 💻 Nama : Achmad Mahfud NIM : 312110520 Kelas : TI.21.C5 Perintah : Buat program sederhana dengan mengaplikasikan pengguna

Achmad Mahfud 1 Dec 23, 2021
Um jogo para treinar COO em python

WAR DUCK Este joguinho bem simples tem como objetivo treinar um pouquinho de POO com python. Não é nada muito complexo mas da pra se divertir Como rod

Gabriel Jospin 3 Sep 19, 2021
Boot.img patcher for Tolino ebook readers to enable ADB and root.

I'm not responsible for any damage to your devices by running this tool. Please note that you may loose warranty when using this, although (This is no

Aaron Dewes 9 Nov 13, 2022
Now you'll never be late for your Webinars or Meetings on the GoToWebinar Platform

GoToWebinar Launcher : Now you'll never be late for your Webinars or Meetings on the GoToWebinar Platform About Are you popular for always being late

Jay Thorat 6 Jun 07, 2022
Cool Bioinformatics Scripts

Cool Bioinformatics Scripts qqplot You can use this script in two ways read tons of millions of P values from stdin # python zcat pval.txt.gz | qqplo

8 Oct 30, 2022
Ramadhan countdown - Simple daily reminder about upcoming Ramadhan

Ramadhan Countdown Bot Simple bot for displaying daily reminder about Islamic pr

Abdurrahman Shofy Adianto 1 Feb 06, 2022
Python Function to manage users via SCIM

Python Function to manage users via SCIM This script helps you to manage your v2 users. You can add and delete users or groups, add users to groups an

4 Oct 11, 2022
tagls is a language server based on gtags.

tagls tagls is a language server based on gtags. Why I wrote it? Almost all modern editors have great support to LSP, but language servers based on se

daquexian 31 Dec 01, 2022
Low-level Python CFFI Bindings for Argon2

Low-level Python CFFI Bindings for Argon2 argon2-cffi-bindings provides low-level CFFI bindings to the Argon2 password hashing algorithm including a v

Hynek Schlawack 4 Dec 15, 2022