Fiber implements an proof-of-concept Python decorator that rewrites a function

Related tags

Miscellaneousfiber
Overview

Fiber

Fiber implements an proof-of-concept Python decorator that rewrites a function so that it can be paused and resumed (by moving stack variables to a heap frame and adding if statements to simulate jumps/gotos to specific lines of code).

Then, using a trampoline function that simulates the call stack on the heap, we can call functions that recurse arbitrarily deeply without stack overflowing (assuming we don't run out of heap memory).

cache = {}

@fiber.fiber(locals=locals())
def fib(n):
    assert n >= 0
    if n in cache:
        return cache[n]
    if n == 0:
        return 0
    if n == 1:
        return 1
    cache[n] = fib(n-1) + fib(n-2)
    return cache[n]

print(sys.getrecursionlimit())  # 1000 by default

# https://www.wolframalpha.com/input/?i=fib%281010%29+mod+10**5
print(trampoline.run(fib, [1010]) % 10 ** 5) # 74305

Please do not use this in production.

TOC

How it works

A quick refresher on the call stack: normally, when some function A calls another function B, A is "paused" while B runs to completion. Then, once B finishes, A is resumed.

In order to move the call stack to the heap, we need to transform function A to (1) store all variables on the heap, and (2) be able to resume execution at specific lines of code within the function.

The first step is easy: we rewrite all local loads and stores to instead load and store in a frame dictionary that is passed into the function. The second is more difficult: because Python doesn't support goto statements, we have to insert if statements to skip the code prefix that we don't want to execute.

There are a variety of "special forms" that cannot be jumped into. These we must handle by rewriting them into a form that we do handle.

For example, if we recursively call a function inside a for loop, we would like to be able to resume execution on the same iteration. However, when Python executes a for loop on an non-iterator iterable it will create a new iterator every time. To handle this case, we rewrite for loops into the equivalent while loop. Similarly, we must rewrite boolean expressions that short circuit (and, or) into the equivalent if statements.

Lastly, we must replace all recursive calls and normal returns by instead returning an instruction to a trampoline to call the child function or return the value to the parent function, respectively.

To recap, here are the AST passes we currently implement:

  1. Rewrite special forms:
    • for_to_while: Transforms for loops into the equivalent while loops.
    • promote_while_cond: Rewrites the while conditional to use a temporary variable that is updated every loop iteration so that we can control when it is evaluated (e.g. if the loop condition includes a recursive call).
    • bool_exps_to_if: Converts and and or expressions into the equivalent if statements.
  2. promote_to_temporary: Assigns the results of recursive calls into temporary variables. This is necessary when we make multiple recursive calls in the same statement (e.g. fib(n-1) + fib(n-2)): we need to resume execution in the middle of the expression.
  3. remove_trivial_temporaries: Removes temporaries that are assigned to only once and are directly assigned to some other variable, replacing subsequent usages with that other variable. This helps us detect tail calls.
  4. insert_jumps: Marks the statement after yield points (currently recursive calls and normal returns) with a pc index, and inserts if statements so that re-execution of the function will resume at that program counter.
  5. lift_locals_to_frame: Replaces loads and stores of local variables to loads and stores in the frame object.
  6. add_trampoline_returns: Replaces places where we must yield (recursive calls and normal returns) with returns to the trampoline function.
  7. fix_fn_def: Rewrites the function defintion to take a frame parameter.

See the examples directory for functions and the results after each AST pass. Also, see src/trampoline_test.py for some test cases.

Performance

A simple tail-recursive function that computes the sum of an array takes about 10-11 seconds to compute with Fiber. 1000 iterations of the equivalent for loop takes 7-8 seconds to compute. So we are slower by roughly a factor of 1000.

lst = list(range(1, 100001))

# fiber
@fiber.fiber(locals=locals())
def sum(lst, acc):
    if not lst:
        return acc
    return sum(lst[1:], acc + lst[0])

# for loop
total = 0
for i in lst:
    total += i

print(total, trampoline.run(sum, [lst, 0]))  # 5000050000, 5000050000

We could improve the performance of the code by eliminating redundant if checks in the generated code. Also, as we statically know the stack variables, we can use an array for the stack frame and integer indexes (instead of a dictionary and string hashes + lookups). This should improve the performance significantly, but there will still probably be a large amount of overhead.

Another performance improvement is to inline the stack array: instead of storing a list of frames in the trampoline, we could variables directly in the stack. Again, we can compute the frame size statically. Based on some tests in a handwritten JavaScript implementation, this has the potential to speed up the code by roughly a factor of 2-3, at the cost of a more complex implementation.

Limitations

  • The transformation works on the AST level, so we don't support other decorators (for example, we cannot use functools.cache in the above Fibonacci example).

  • The function can only access variables that are passed in the locals= argument. As a consequence of this, to resolve recursive function calls, we maintain a global mapping of all fiber functions by name. This means that fibers must have distinct names.

  • We don't support some special forms (ternaries, comprehensions). These can easily be added as a rewrite transformation.

  • We don't support exceptions. This would require us to keep track of exception handlers in the trampoline and insert returns to the trampoline to register and deregister handlers.

  • We don't support generators. To add support, we would have to modify the trampoline to accept another operation type (yield) that sends a value to the function that called next(). Also, the trampoline would have to support multiple call stacks.

Possible improvements

  • Improve test coverage on some of the AST transformations.
    • remove_trivial_temporaries may have a bug if the variable that it is replaced with is reassigned to another value.
  • Support more special forms (comprehensions, generators).
  • Support exceptions.
  • Support recursive calls that don't read the return value.

Questions

Why didn't you use Python generators?

It's less interesting as the transformations are easier. Here, we are effectively implementing generators in userspace (i.e. not needing VM support); see the answer to the next question for why this is useful.

Also, people have used generators to do this; see one recent generator example.

Why did you write this?

  • A+ project for CS 61A at Berkeley. During the course, we created a Scheme interpreter. The extra credit question we to replace tail calls in Python with a return to a trampoline, with the goal that tail call optimization in Python would let us evaluate tail calls to arbitrary depth in Scheme, in constant space.

    The test cases for the question checked whether interpreting tail-call recursive functions in Scheme caused a Python stack overflow. Using this Fiber implementation, (1) without tail call optimization in our trampoline, we would still be able to pass the test cases (we just wouldn't use constant space) and (2) we can now evaluate any Scheme expression to arbitrary depth, even if they are not in tail form.

  • The React framework has an a bug open which explores a compiler transform to rewrite JavaScript generators to a state machine so that recursive operations (render, reconcilation) can be written more easily. This is necessary because some JavaScript engines still don't support generators.

    This project basically implements a rough version of that compiler transform as a proof of concept, just in Python. https://github.com/facebook/react/pull/18942

Contributing

See CONTRIBUTING.md for more details.

License

Apache 2.0; see LICENSE for more details.

Disclaimer

This is a personal project, not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
Tyler Hou
Tyler Hou
Automatically find solutions when your Python code encounters an issue.

What The Python?! Helping you find answers to the errors Python spits out. Installation You can find the source code on GitHub at: https://github.com/

What The Python?! 139 Dec 14, 2022
A visidata plugin for parsing f5 ltm/gtm/audit logs

F5 Log Visidata Plugin This plugin supports the default log format for: /var/log/ltm* /var/log/gtm* /var/log/apm* /var/log/audit* It extracts common l

James Deucker 1 Jan 06, 2022
Build a grocery store management application.

python_projects_grocery_webapp In this python project, we will build a grocery store management application. It will be 3 tier application, Front end:

codebasics 54 Dec 29, 2022
Tools Elit Adalah Sebuah Script Crack Yang Wajib Tap Yes...

Tools Elit Adalah Sebuah Script Crack Yang Wajib Tap Yes...

Risky [ Zero Tow ] 10 Apr 07, 2022
Procedural modeling of fruit and sandstorm in Blender (bpy).

SandFruit Procedural modelling of fruit and sandstorm. Created by Adriana Arcia and Maya Boateng. Last updated December 19, 2020 Goal & Inspiration Ou

Adriana Arcia 2 Mar 20, 2022
The best way to learn Python is by practicing examples. The repository contains examples of basic concepts of Python. You are advised to take the references from these examples and try them on your own.

90_Python_Exercises_and_Challenges The best way to learn Python is by practicing examples. This repository contains the examples on basic and advance

Milaan Parmar / Милан пармар / _米兰 帕尔马 205 Jan 06, 2023
Basic code and description for GoBigger challenge 2021.

GoBigger Challenge 2021 en / 中文 Challenge Description 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent Decision Intelligence Challeng

OpenDILab 183 Dec 29, 2022
Blender addon, import and update mixamo animation

This is a blender addon for import and update mixamo animations.

ywaby 7 Apr 19, 2022
Python calculator made with tkinter package

Python-Calculator Python calculator made with tkinter package. works both on Visual Studio Code Or Any Other Ide Or You Just Copy paste The Same Thing

Pro_Gamer_711 1 Nov 11, 2021
A example project's description is a high-level overview of why you’re doing a project.

A example project's description is a high-level overview of why you’re doing a project.

Nikita Matyukhin 12 Mar 23, 2022
LTGen provides classic algorithms used in Language Theory.

LTGen LTGen stands for Language Theory GENerator and provides tools to implement language theory. Command Line LTGen is a collection of tools to imple

Hugues Cassé 1 Jan 07, 2022
libvcs - abstraction layer for vcs, powers vcspull.

libvcs - abstraction layer for vcs, powers vcspull. Setup $ pip install libvcs Open up python: $ python # or for nice autocomplete and syntax highlig

python utilities for version control 46 Dec 14, 2022
Calculator in command line using python programming language

Calculator in command line using python programming language University of the People Python fundamental Chapter 5 Conditionals and recursion The main

mark sikaundi 3 Dec 09, 2021
A tool to flash .ofp files in bootloader mode without needing MSM Tool, an alternative to official realme tool

Oppo/Realme Flash .OFP File on Bootloader A tool to flash .ofp files in bootloader mode without needing MSM Tool, an alternative to official realme to

Italo Almeida 70 Jan 02, 2023
Shopping-card - Shopping Card Project With Python

Shopping Card Project this application was built to handle problems with saving

moein98 1 May 06, 2022
Project for viewing the cheapest flight deals from Netherlands to other countries.

Flight_Deals_AMS Project for viewing the cheapest flight deals from Netherlands to other countries.

2 Dec 17, 2022
Always fill your package requirements without the user having to do anything! Simple and easy!

WSL Should now work always-fill-reqs-python3 Always fill your package requirements without the user having to do anything! Simple and easy! Supported

Hashm 7 Jan 19, 2022
A napari plugin to inspect data within a cisTEM project

napari-cistem A plugin to inspect data within a cisTEM project This napari plugin was generated with Cookiecutter using with @napari's cookiecutter-na

Johannes Elferich 1 Nov 07, 2021
One Ansible Module for using LINE notify API to send notification. It can be required in the collection list.

Ansible Collection - hazel_shen.line_notify Documentation for the collection. ansible-galaxy collection install hazel_shen.line_notify --ignore-certs

Hazel Shen 4 Jul 19, 2021
A plugin for poetry that allows you to execute scripts defined in your pyproject.toml, just like you can in npm or pipenv

poetry-exec-plugin A plugin for poetry that allows you to execute scripts defined in your pyproject.toml, just like you can in npm or pipenv Installat

38 Jan 06, 2023