Fiber implements an proof-of-concept Python decorator that rewrites a function

Related tags

Miscellaneousfiber
Overview

Fiber

Fiber implements an proof-of-concept Python decorator that rewrites a function so that it can be paused and resumed (by moving stack variables to a heap frame and adding if statements to simulate jumps/gotos to specific lines of code).

Then, using a trampoline function that simulates the call stack on the heap, we can call functions that recurse arbitrarily deeply without stack overflowing (assuming we don't run out of heap memory).

cache = {}

@fiber.fiber(locals=locals())
def fib(n):
    assert n >= 0
    if n in cache:
        return cache[n]
    if n == 0:
        return 0
    if n == 1:
        return 1
    cache[n] = fib(n-1) + fib(n-2)
    return cache[n]

print(sys.getrecursionlimit())  # 1000 by default

# https://www.wolframalpha.com/input/?i=fib%281010%29+mod+10**5
print(trampoline.run(fib, [1010]) % 10 ** 5) # 74305

Please do not use this in production.

TOC

How it works

A quick refresher on the call stack: normally, when some function A calls another function B, A is "paused" while B runs to completion. Then, once B finishes, A is resumed.

In order to move the call stack to the heap, we need to transform function A to (1) store all variables on the heap, and (2) be able to resume execution at specific lines of code within the function.

The first step is easy: we rewrite all local loads and stores to instead load and store in a frame dictionary that is passed into the function. The second is more difficult: because Python doesn't support goto statements, we have to insert if statements to skip the code prefix that we don't want to execute.

There are a variety of "special forms" that cannot be jumped into. These we must handle by rewriting them into a form that we do handle.

For example, if we recursively call a function inside a for loop, we would like to be able to resume execution on the same iteration. However, when Python executes a for loop on an non-iterator iterable it will create a new iterator every time. To handle this case, we rewrite for loops into the equivalent while loop. Similarly, we must rewrite boolean expressions that short circuit (and, or) into the equivalent if statements.

Lastly, we must replace all recursive calls and normal returns by instead returning an instruction to a trampoline to call the child function or return the value to the parent function, respectively.

To recap, here are the AST passes we currently implement:

  1. Rewrite special forms:
    • for_to_while: Transforms for loops into the equivalent while loops.
    • promote_while_cond: Rewrites the while conditional to use a temporary variable that is updated every loop iteration so that we can control when it is evaluated (e.g. if the loop condition includes a recursive call).
    • bool_exps_to_if: Converts and and or expressions into the equivalent if statements.
  2. promote_to_temporary: Assigns the results of recursive calls into temporary variables. This is necessary when we make multiple recursive calls in the same statement (e.g. fib(n-1) + fib(n-2)): we need to resume execution in the middle of the expression.
  3. remove_trivial_temporaries: Removes temporaries that are assigned to only once and are directly assigned to some other variable, replacing subsequent usages with that other variable. This helps us detect tail calls.
  4. insert_jumps: Marks the statement after yield points (currently recursive calls and normal returns) with a pc index, and inserts if statements so that re-execution of the function will resume at that program counter.
  5. lift_locals_to_frame: Replaces loads and stores of local variables to loads and stores in the frame object.
  6. add_trampoline_returns: Replaces places where we must yield (recursive calls and normal returns) with returns to the trampoline function.
  7. fix_fn_def: Rewrites the function defintion to take a frame parameter.

See the examples directory for functions and the results after each AST pass. Also, see src/trampoline_test.py for some test cases.

Performance

A simple tail-recursive function that computes the sum of an array takes about 10-11 seconds to compute with Fiber. 1000 iterations of the equivalent for loop takes 7-8 seconds to compute. So we are slower by roughly a factor of 1000.

lst = list(range(1, 100001))

# fiber
@fiber.fiber(locals=locals())
def sum(lst, acc):
    if not lst:
        return acc
    return sum(lst[1:], acc + lst[0])

# for loop
total = 0
for i in lst:
    total += i

print(total, trampoline.run(sum, [lst, 0]))  # 5000050000, 5000050000

We could improve the performance of the code by eliminating redundant if checks in the generated code. Also, as we statically know the stack variables, we can use an array for the stack frame and integer indexes (instead of a dictionary and string hashes + lookups). This should improve the performance significantly, but there will still probably be a large amount of overhead.

Another performance improvement is to inline the stack array: instead of storing a list of frames in the trampoline, we could variables directly in the stack. Again, we can compute the frame size statically. Based on some tests in a handwritten JavaScript implementation, this has the potential to speed up the code by roughly a factor of 2-3, at the cost of a more complex implementation.

Limitations

  • The transformation works on the AST level, so we don't support other decorators (for example, we cannot use functools.cache in the above Fibonacci example).

  • The function can only access variables that are passed in the locals= argument. As a consequence of this, to resolve recursive function calls, we maintain a global mapping of all fiber functions by name. This means that fibers must have distinct names.

  • We don't support some special forms (ternaries, comprehensions). These can easily be added as a rewrite transformation.

  • We don't support exceptions. This would require us to keep track of exception handlers in the trampoline and insert returns to the trampoline to register and deregister handlers.

  • We don't support generators. To add support, we would have to modify the trampoline to accept another operation type (yield) that sends a value to the function that called next(). Also, the trampoline would have to support multiple call stacks.

Possible improvements

  • Improve test coverage on some of the AST transformations.
    • remove_trivial_temporaries may have a bug if the variable that it is replaced with is reassigned to another value.
  • Support more special forms (comprehensions, generators).
  • Support exceptions.
  • Support recursive calls that don't read the return value.

Questions

Why didn't you use Python generators?

It's less interesting as the transformations are easier. Here, we are effectively implementing generators in userspace (i.e. not needing VM support); see the answer to the next question for why this is useful.

Also, people have used generators to do this; see one recent generator example.

Why did you write this?

  • A+ project for CS 61A at Berkeley. During the course, we created a Scheme interpreter. The extra credit question we to replace tail calls in Python with a return to a trampoline, with the goal that tail call optimization in Python would let us evaluate tail calls to arbitrary depth in Scheme, in constant space.

    The test cases for the question checked whether interpreting tail-call recursive functions in Scheme caused a Python stack overflow. Using this Fiber implementation, (1) without tail call optimization in our trampoline, we would still be able to pass the test cases (we just wouldn't use constant space) and (2) we can now evaluate any Scheme expression to arbitrary depth, even if they are not in tail form.

  • The React framework has an a bug open which explores a compiler transform to rewrite JavaScript generators to a state machine so that recursive operations (render, reconcilation) can be written more easily. This is necessary because some JavaScript engines still don't support generators.

    This project basically implements a rough version of that compiler transform as a proof of concept, just in Python. https://github.com/facebook/react/pull/18942

Contributing

See CONTRIBUTING.md for more details.

License

Apache 2.0; see LICENSE for more details.

Disclaimer

This is a personal project, not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
Tyler Hou
Tyler Hou
My solutions for Advent of Code 2021 🌟🎄

🌟 Advent of Code 2021 🎄 My solutions for Advent of Code 2021. About · What is Advent of Code? · Contents · Usage · Table of puzzles (TODO: add final

Amanda P. Pinha 2 Dec 05, 2022
Verification of Monty Hall problem by experimental simulation.

Verification of Monty Hall problem by experimental simulation. |中文|English| In the process of learning causal inference, I learned about the Monty Hal

云端听茗 1 Nov 22, 2022
ChieriBot,词云API版,用于统计群友说过的怪话

wordCloud_API 词云API版,用于统计群友说过的怪话,基于wordCloud 消息储存在mysql数据库中.数据表结构见table.sql 为啥要做成API:这玩意太吃性能了,如果和Bot放在同一个服务器,可能会影响到bot的正常运行 你服务器性能够用的话就当我在放屁 依赖包 pip i

chinosk 7 Mar 20, 2022
Feature engineering library that helps you keep track of feature dependencies, documentation and schema

Feature engineering library that helps you keep track of feature dependencies, documentation and schema

28 May 31, 2022
apysc is the Python frontend library to create html and js file, that has ActionScript 3 (as3)-like interface.

apysc apysc is the Python frontend library to create HTML and js files, that has ActionScript 3 (as3)-like interface. Notes: Currently developing and

simonritchie 17 Dec 14, 2022
Welcome to my pod transcript search webb app!

pod_transcript_search Welcome to the pod transcript search webb app! Tech stack used: Languages used: Python (for the back-end), JavaScript (for the f

3 Feb 04, 2022
Python - Aprendendo Python na ByLearn

PYTHON Identação Escopo Pai Escopo filho Escopo neto Variaveis

Italo Rafael 3 May 31, 2022
Med to csv - A simple way to parse MedAssociate output file in tidy data

MedAssociates to CSV file A simple way to parse MedAssociate output file in tidy

Jean-Emmanuel Longueville 5 Sep 09, 2022
Runtime fault injection platform by Daniele Rizzieri (2021)

GDBitflip [v1.04] Runtime fault injection platform by Daniele Rizzieri (2021) This platform executes N times a binary and during each execution it inj

Daniele Rizzieri 1 Dec 07, 2021
Telegram bot to upload media to telegra.ph

Telegraph @StarkTelegraphBot A star ⭐ from you means a lot to us ! Telegram bot to upload media to telegra.ph Usage Deploy to Heroku Tap on above butt

Stark Bots 24 Dec 29, 2022
Supercharge your NFTs with new behaviours and superpowers!

WrapX Supercharge your NFTs with new behaviours and superpowers! WrapX is a collection of Wrappers (currently one - WrapXSet) to decorate your NTFs ad

Emiliano Bonassi 9 Jun 13, 2022
Python library to decorate and beautify strings

outputformater Python library to decorate and beautify your standard output 💖 I

Felipe Delestro Matos 259 Dec 13, 2022
A tool to help plan vacations with friends and family

Vacationer In Development A tool to help plan vacations with friends and family Deployment Requirements: NPM Docker Docker-Compose Deployment Instruct

JK 2 Oct 05, 2021
Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked

Local osu! server Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked (coming soon)! Windows Setup Insta

Cover 25 Nov 15, 2022
Convex Optimisation MVA course - Assignment

Convex Optimisation MVA course - Assignment This repository contains the coding files of the third assignment in the MVA Convex Optimisation course. U

1 Nov 27, 2021
Aplicação que envia regularmente um email ao utilizador com todos os filmes disponíveis no cartaz dos cinemas Nos.

Cartaz-Cinemas-Nos Aplicação que envia regularmente uma notificação ao utilizador com todos os filmes disponíveis no cartaz dos cinemas Nos. Só funcio

Cavalex 1 Jan 09, 2022
This is a vscode extension with a Virtual Assistant that you can play with when you are bored or you need help..

VS Code Virtual Assistant This is a vscode extension with a Virtual Assistant that you can play with when you are bored or you need help. Its currentl

Soham Ghugare 6 Aug 22, 2021
A tool to build reproducible wheels for you Python project or for all of your dependencies

asaman: Amra Saman (আমরা সমান) This is a tool to build reproducible wheels for your Python project or for all of your dependencies. What this means is

Kushal Das 14 Aug 05, 2022
Sync SiYuanNote & Yuque.

SiyuanYuque Sync SiYuanNote & Yuque. Install Use pip to install. pip install SiyuanYuque Execute like this: python -m SiyuanYuque Remember to create a

Clouder 23 Nov 25, 2022
Gobigger Explore For Python

Gobigger-Explore 🔮 GoBigger Challenge 2021 Baseline en/中文 🤖 Introduction This is the baseline of GoBigger Multi-Agent Decision Intelligence Challeng

OpenDILab 145 Dec 22, 2022