A library for python made by me,to make the use of MySQL easier and more pythonic

Overview

my_ezql

A library for python made by me,to make the use of MySQL easier and more pythonic

This library was made by Tony Hasson , a 25 year old student of Computer Science.

I made this project because I noticed that I had to use to much SQL queries in Python and that didn't seem right to me,so I wanted to make a library that will Mysql more pythonic and easier to use(hence the name my_ezql).

Feel free to use this library freely and suggest any approvments that come to mind.

Different ways to contact me for any reason ( feel free =] )

linkedIn- https://www.linkedin.com/in/tony-hasson-a14402205/

GitHub- https://github.com/tonyhasson

Thanks for reading and I hope you enjoy the library!


#setup guide

installation:

pip install my_ezql

import

from my_ezql import ezql

A quick guide how to start using the library correctly:

(0) Before you can use this library,you MUST have a Mysql server!

(1) First of all,create a ezql object,this object will contain your database,tables,etc..

for example- ezql_obj=ezql()

(2) Once you've created your ezql object,you need to create a connection with your Mysql server and database ( if you don't have a database yet,skip to (2.1)+(2.2) ).

for example- sql_obj.create_server_connection("host_name","user_name","password","database_name")

host_name- usually 127.0.0.1 
user_name and password- the user name and password for your Mysql server.
database_name- your database name. (duh)

(2.1) In case you didn't create a database yet,first of all create a connection with your Mysql server.

for example- sql_obj.create_server_connection("host_name","user_name","password")
   
host_name- usually 127.0.0.1 
user_name and password- the user name and password for your Mysql server.

(2.2) Now we will create a database in your server,once you create the database,it will automatically restart your connection with the server and with your newly created default database.

for example- sql_obj.create_database("database_name")

database_name- your database name. (duh)

(3) And that's it! you're ready to use the library.


#How to use sql queries in my_ezql?

You have two options,the first option is the same as before,enter a sql string into self.query,and send it to either
self.execute_query/self.read_query depending on the operation.

The second option(which is why I made the library in the first place) is to use Command function,
scroll down to see a full guide on how to use it correctly.

#modify tables functions:

(1)create_table

to create a table simply send the wanted table_name,send the column names with their data type as well,
and there is a default ID that increments itself so no need to create one,but you need a diffrent one you can just
send False to it.
    
code example: sql_obj.create_table("new_table",name="str",age="int")  

(2)delete_table

to delete a table simply send the wanted table_name and that's it!

code example: sql_obj.delete_table("new_table")

(3)clear_table

to delete a table simply send the wanted table_name and that's it!

code example: sql_obj.clear_table("new_table")

(4)copy_table

to copy one table to the other you need to send the name of the table where you want to take data from,and
a table where you want to send your data to,the default is to send all of data from the first table to the second,
but you can change that and only copy the columns by choosing full_or_empty to be False.

PS , if your "to_table" has different columns than "from_table" ,"to_table" will be deleted and created as a new copy of "from_table".

code example: sql_obj.copy_table("from_table","to_table")

#operations in command:

In this summary of operations of command function I will introduce each argument and their meaning/how to use them.

(1) type query- type of sql command:

=20",c1="AND",c2="(",city="(str)=yavne",c3="OR",gender="(str)!=girl",c4=")") in this long example you will select the name and the age where the age is bigger or greater than 80 and (city is yavne or gender is not a girl) (1.2) INSERT- insert lets you insert data to desired columns enter desired columns into col and conditions into conditions, or you can insert the columns and values from conditions and leave col empty. code example: sql_obj.command("insert","new_table1","name","age","city","gender",c1="(str)john",c2="(int)25",c3="(str)new york",c4="(str)boy") in this example, I wrote the columns in col and sent them matching value through conditions(it's important to name them c and then a number). code example: sql_obj.command("insert","test_ezql",age="(int)82",name="(str)idk",city="(str)kfar saba") in this example , age=82,name=idk and city=kfar saba will be entered into test_ezql,here I left col empty and used only conditions. (1.3) UPDATE-update lets you update desired data through choosing their columns and matching with conditions. right now updates only works from entering columns and values through conditions. **(WARNING! if you omit the where argument,the operation will update all of the table!)** code example: sql_obj.command("update","test_ezql",where=True,city="(str)=rehovot",where_cond="where_cond",idnew_table="(int)=11") in this example, you will update city to rehovot where idnew_table is 11,the where_cond separates between the value we want to update to the condition. (1.4) DELETE-delete will delete the row wherever he found a matching value, insert columns and values through conditions. **(WARNING! if you omit the where argument,the operation will delete all of the rows in the table!)** code example: sql_obj.command("delete","test_ezql",where=True,name="(str)=idk") in this example,you will delete every row where the name is idk. ">
     (1.1) SELECT- select lets you select data according to what columns you choose and which conditions.
                   enter desired columns into col and conditions into conditions.
     
         code example: results=sql_obj.command("select","test_ezql","ALL_COL",where=True,pandas_df=True,name="(str)=idk")
         in this example you will select all of the columns where name is idk.
         
         code example:  results=sql_obj.command("select","test_ezql","name","age",pandas_df=True,where=True,age="(int)>=20",c1="AND",c2="(",city="(str)=yavne",c3="OR",gender="(str)!=girl",c4=")")
         in this long example you will select the name and the age where the age is bigger or greater than 80 and (city is yavne or gender is not a girl)
     
     
     
     (1.2) INSERT- insert lets you insert data to desired columns  
     enter desired columns into col and conditions into conditions,
     or you can insert the columns and values from conditions and leave col empty.
        
        code example: sql_obj.command("insert","new_table1","name","age","city","gender",c1="(str)john",c2="(int)25",c3="(str)new york",c4="(str)boy")
        in this example, I wrote the columns in col and sent them matching value through conditions(it's important to name them c and then a number).
              
        code example: sql_obj.command("insert","test_ezql",age="(int)82",name="(str)idk",city="(str)kfar saba")
        in this example , age=82,name=idk and city=kfar saba will be entered into test_ezql,here I left col empty and used only conditions.



     (1.3) UPDATE-update lets you update desired data through choosing their columns and matching with conditions.
                  right now updates only works from entering columns and values through conditions.
                  **(WARNING! if you omit the where argument,the operation will update all of the table!)**
        
        code example: sql_obj.command("update","test_ezql",where=True,city="(str)=rehovot",where_cond="where_cond",idnew_table="(int)=11")
        in this example, you will update city to rehovot where idnew_table is 11,the where_cond separates between the value we want to
        update to the condition. 
        
        
        
     (1.4) DELETE-delete will delete the row wherever he found a matching value,
                  insert columns and values through conditions.
                  **(WARNING! if you omit the where argument,the operation will delete all of the rows in the table!)**
        
          code example: sql_obj.command("delete","test_ezql",where=True,name="(str)=idk")
          in this example,you will delete every row where the name is idk.

(2) table_name

the table_name you want to get/insert data to.
it is important that the table already exists in that database or else the operations won't succeed.

(3) *col

a python *args object that will contain all of the desired columns.
*col is used in SELECT,can be used in INSERT,but is not used in UPDATE and DELETE.
(you can enter '*' or "ALL_COL" if you want to view the data about all of the columns)

(4) pandas

boolean, option to return the result as a pandas dataframe.
this option is defaulted to False,so to activate it simply send True.

(5) where

boolean, lets you use where statement.
this option is defaulted to False,so to activate it simply send True.
used in type_query:select,update and delete.
(see warning about update and delete in numbers (1.3) and (1.4))

(6) **conditions

a python **kwargs object,designed as shown below:

  {col/condition_number:"(data type)(combination of arithmetic signs)desired value"} 
  
  for example :  city="(str)=yavne",age="(int)<20"
  
  if you want to use AND/OR you can write them as one of the objects
  inside condition with the letter c and a number,and in the value enter AND/OR.
  
  for example :  c1="AND"
  
  you can add parenthesis '(' OR ')' the same way you did for AND/OR to make more complex queries.
                   
  (it is IMPORTANT to note that conditions usage varies between different type queries)
A Python DB-API and SQLAlchemy dialect to Google Spreasheets

Note: shillelagh is a drop-in replacement for gsheets-db-api, with many additional features. You should use it instead. If you're using SQLAlchemy all

Beto Dealmeida 185 Jan 01, 2023
A Python library for Cloudant and CouchDB

Cloudant Python Client This is the official Cloudant library for Python. Installation and Usage Getting Started API Reference Related Documentation De

Cloudant 162 Dec 19, 2022
Find graph motifs using intuitive notation

d o t m o t i f Find graph motifs using intuitive notation DotMotif is a library that identifies subgraphs or motifs in a large graph. It looks like t

APL BRAIN 45 Jan 02, 2023
A fast MySQL driver written in pure C/C++ for Python. Compatible with gevent through monkey patching.

:: Description :: A fast MySQL driver written in pure C/C++ for Python. Compatible with gevent through monkey patching :: Requirements :: Requires P

ESN Social Software 549 Nov 18, 2022
A simple Python tool to transfer data from MySQL to SQLite 3.

MySQL to SQLite3 A simple Python tool to transfer data from MySQL to SQLite 3. This is the long overdue complimentary tool to my SQLite3 to MySQL. It

Klemen Tusar 126 Jan 03, 2023
Py2neo is a comprehensive toolkit for working with Neo4j from within Python applications or from the command line.

Py2neo v3 Py2neo is a client library and toolkit for working with Neo4j from within Python applications and from the command line. The core library ha

64 Oct 14, 2022
A HugSQL-inspired database library for Python

PugSQL PugSQL is a simple Python interface for using parameterized SQL, in files. See pugsql.org for the documentation. To install: pip install pugsql

Dan McKinley 558 Dec 24, 2022
Official Python low-level client for Elasticsearch

Python Elasticsearch Client Official low-level client for Elasticsearch. Its goal is to provide common ground for all Elasticsearch-related code in Py

elastic 3.8k Jan 01, 2023
Databank is an easy-to-use Python library for making raw SQL queries in a multi-threaded environment.

Databank Databank is an easy-to-use Python library for making raw SQL queries in a multi-threaded environment. No ORM, no frills. Thread-safe. Only ra

snapADDY GmbH 4 Apr 04, 2022
MinIO Client SDK for Python

MinIO Python SDK for Amazon S3 Compatible Cloud Storage MinIO Python SDK is Simple Storage Service (aka S3) client to perform bucket and object operat

High Performance, Kubernetes Native Object Storage 582 Dec 28, 2022
sync/async MongoDB ODM, yes.

μMongo: sync/async ODM μMongo is a Python MongoDB ODM. It inception comes from two needs: the lack of async ODM and the difficulty to do document (un)

Scille 428 Dec 29, 2022
dask-sql is a distributed SQL query engine in python using Dask

dask-sql is a distributed SQL query engine in Python. It allows you to query and transform your data using a mixture of common SQL operations and Python code and also scale up the calculation easily

Nils Braun 271 Dec 30, 2022
ClickHouse Python Driver with native interface support

ClickHouse Python Driver ClickHouse Python Driver with native (TCP) interface support. Asynchronous wrapper is available here: https://github.com/myma

Marilyn System 957 Dec 30, 2022
A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at the browser.

First Redis Python (CRUD) A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at t

Max Base 9 Dec 24, 2022
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Dec 31, 2022
Estoult - a Python toolkit for data mapping with an integrated query builder for SQL databases

Estoult Estoult is a Python toolkit for data mapping with an integrated query builder for SQL databases. It currently supports MySQL, PostgreSQL, and

halcyon[nouveau] 15 Dec 29, 2022
Python interface to Oracle Database conforming to the Python DB API 2.0 specification.

cx_Oracle version 8.2 (Development) cx_Oracle is a Python extension module that enables access to Oracle Database. It conforms to the Python database

Oracle 841 Dec 21, 2022
Make Your Company Data Driven. Connect to any data source, easily visualize, dashboard and share your data.

Redash is designed to enable anyone, regardless of the level of technical sophistication, to harness the power of data big and small. SQL users levera

Redash 22.4k Dec 30, 2022
Micro ODM for MongoDB

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

Roman 993 Jan 03, 2023
Little wrapper around asyncpg for specific experience.

Little wrapper around asyncpg for specific experience.

Nikita Sivakov 3 Nov 15, 2021