A Python library for dynamic classifier and ensemble selection

Overview
Documentation Status https://circleci.com/gh/scikit-learn-contrib/DESlib.svg?style=shield https://travis-ci.org/scikit-learn-contrib/DESlib.svg?branch=master Codacy Badge https://badges.gitter.im/DESlib/gitter.png

DESlib

DESlib is an easy-to-use ensemble learning library focused on the implementation of the state-of-the-art techniques for dynamic classifier and ensemble selection. The library is is based on scikit-learn, using the same method signatures: fit, predict, predict_proba and score. All dynamic selection techniques were implemented according to the definitions from [1].

Dynamic Selection:

Dynamic Selection (DS) refers to techniques in which the base classifiers are selected dynamically at test time, according to each new sample to be classified. Only the most competent, or an ensemble of the most competent classifiers is selected to predict the label of a specific test sample. The rationale for these techniques is that not every classifier in the pool is an expert in classifying all unknown samples, but rather each base classifier is an expert in a different local region of the feature space.

DS is one of the most promising MCS approaches (Multiple Classifier Systems) due to an increasing number of empirical studies reporting superior performance over static combination methods. Such techniques have achieved better classification performance especially when dealing with small-sized and imbalanced datasets.

Installation:

The package can be installed using pip:

Stable version:

pip install deslib

Latest version (under development):

pip install git+https://github.com/scikit-learn-contrib/DESlib

Dependencies:

DESlib is tested to work with Python 3.5, 3.6 and 3.7. The dependency requirements are:

  • scipy(>=1.4.0)
  • numpy(>=1.17.0)
  • scikit-learn(>=0.20.0)

These dependencies are automatically installed using the pip commands above.

Examples:

Here we show an example using the KNORA-E method with random forest as a pool of classifiers:

from deslib.des.knora_e import KNORAE

# Train a pool of 10 classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10)
pool_classifiers.fit(X_train, y_train)

# Initialize the DES model
knorae = KNORAE(pool_classifiers)

# Preprocess the Dynamic Selection dataset (DSEL)
knorae.fit(X_dsel, y_dsel)

# Predict new examples:
knorae.predict(X_test)

The library accepts any list of classifiers (compatible with scikit-learn) as input, including a list containing different classifier models (heterogeneous ensembles). More examples on how to use the API can be found in the documentation and in the Examples directory.

Organization:

The library is divided into four modules:

  1. deslib.des: Implementation of DES techniques (Dynamic Ensemble Selection).
  2. deslib.dcs: Implementation of DCS techniques (Dynamic Classifier Selection).
  3. deslib.static: Implementation of baseline ensemble methods.
  4. deslib.util: A collection of aggregation functions and diversity measures for ensemble of classifiers.
  • DES techniques currently available are:
    1. META-DES [7] [8] [15]
    2. K-Nearest-Oracle-Eliminate (KNORA-E) [3]
    3. K-Nearest-Oracle-Union (KNORA-U) [3]
    4. Dynamic Ensemble Selection-Performance(DES-P) [12]
    5. K-Nearest-Output Profiles (KNOP) [9]
    6. Randomized Reference Classifier (DES-RRC) [10]
    7. DES Kullback-Leibler Divergence (DES-KL) [12]
    8. DES-Exponential [21]
    9. DES-Logarithmic [11]
    10. DES-Minimum Difference [21]
    11. DES-Clustering [16]
    12. DES-KNN [16]
    13. DES Multiclass Imbalance (DES-MI) [24]
  • DCS techniques currently available are:
    1. Modified Classifier Rank (Rank) [19]
    2. Overall Local Accuracy (OLA) [4]
    3. Local Class Accuracy (LCA) [4]
    4. Modified Local Accuracy (MLA) [23]
    5. Multiple Classifier Behaviour (MCB) [5]
    6. A Priori Selection (A Priori) [6]
    7. A Posteriori Selection (A Posteriori) [6]
  • Baseline methods:
    1. Oracle [20]
    2. Single Best [2]
    3. Static Selection [2]
    4. Stacked Classifier [25]

Variations of each DES techniques are also provided by the library (e.g., different versions of the META-DES framework).

The following techniques are also available for all methods:
  • For DES techniques, the combination of the selected classifiers can be done as Dynamic Selection (majority voting), Dynamic Weighting (weighted majority voting) or a Hybrid (selection + weighting).
  • For all DS techniques, Dynamic Frienemy Pruning (DFP) [13] can be used.
  • For all DS techniques, Instance Hardness (IH) can be used to classify easy samples with a KNN and hard samples using the DS technique. More details on IH and Dynamic Selection can be found in [14].

As an optional requirement, the fast KNN implementation from FAISS can be used to speed-up the computation of the region of competence.

Citation

If you use DESLib in a scientific paper, please consider citing the following paper:

Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin and George D. C. Cavalcanti DESlib: A Dynamic ensemble selection library in Python. arXiv preprint arXiv:1802.04967 (2018).

@article{JMLR:v21:18-144,
    author  = {Rafael M. O. Cruz and Luiz G. Hafemann and Robert Sabourin and George D. C. Cavalcanti},
    title   = {DESlib: A Dynamic ensemble selection library in Python},
    journal = {Journal of Machine Learning Research},
    year    = {2020},
    volume  = {21},
    number  = {8},
    pages   = {1-5},
    url     = {http://jmlr.org/papers/v21/18-144.html}
}

References:

[1] : R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.
[2] (1, 2) : A. S. Britto, R. Sabourin, L. E. S. de Oliveira, Dynamic selection of classifiers - A comprehensive review, Pattern Recognition 47 (11) (2014) 3665–3680.
[3] (1, 2) : A. H. R. Ko, R. Sabourin, u. S. Britto, Jr., From dynamic classifier selection to dynamic ensemble selection, Pattern Recognition 41 (2008) 1735–1748.
[4] (1, 2) : K. Woods, W. P. Kegelmeyer, Jr., K. Bowyer, Combination of multiple classifiers using local accuracy estimates, IEEE Transactions on Pattern Analysis Machine Intelligence 19 (1997) 405–410.
[5] : G. Giacinto, F. Roli, Dynamic classifier selection based on multiple classifier behaviour, Pattern Recognition 34 (2001) 1879–1881.
[6] (1, 2) : L. Didaci, G. Giacinto, F. Roli, G. L. Marcialis, A study on the performances of dynamic classifier selection based on local accuracy estimation, Pattern Recognition 38 (11) (2005) 2188–2191.
[7] : R. M. O. Cruz, R. Sabourin, G. D. C. Cavalcanti, T. I. Ren, META-DES: A dynamic ensemble selection framework using meta-learning, Pattern Recognition 48 (5) (2015) 1925–1935.
[8] : Cruz, R.M., Sabourin, R. and Cavalcanti, G.D., 2015, July. META-DES. H: a dynamic ensemble selection technique using meta-learning and a dynamic weighting approach. In Neural Networks (IJCNN), 2015 International Joint Conference on (pp. 1-8)
[9] : P. R. Cavalin, R. Sabourin, C. Y. Suen, Dynamic selection approaches for multiple classifier systems, Neural Computing and Applications 22 (3-4) (2013) 673–688.
[10] : T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection, Pattern Recognition 44 (2011) 2656–2668.
[11] : T.Woloszynski, M. Kurzynski, A measure of competence based on randomized reference classifier for dynamic ensemble selection, in: International Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.
[12] (1, 2) : T. Woloszynski, M. Kurzynski, P. Podsiadlo, G. W. Stachowiak, A measure of competence based on random classification for dynamic ensemble selection, Information Fusion 13 (3) (2012) 207–213.
[13] : Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., Online Pruning of Base Classifiers for Dynamic Ensemble Selection, Pattern Recognition, vol. 72, December 2017, pp 44-58.
[14] : Cruz RM, Zakane HH, Sabourin R, Cavalcanti GD. Dynamic Ensemble Selection VS K-NN: why and when Dynamic Selection obtains higher classification performance?.
[15] : R. M. O. Cruz, R. Sabourin, G. D. C. Cavalcanti, META-DES.Oracle: Meta-learning and feature selection for dynamic ensemble selection, Information Fusion 38 (2017) 84–103.Nov 30;38:84-103.
[16] (1, 2) : R. G. F. Soares, A. Santana, A. M. P. Canuto, M. C. P. de Souto, Using accuracy and diversity to select classifiers to build ensembles, Proceedings of the International Joint Conference on Neural Networks (2006) 1310–1316.
[17] : L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley-Interscience, 2004.
[18] : Shipp, Catherine A., and Ludmila I. Kuncheva. "Relationships between combination methods and measures of diversity in combining classifiers." Information fusion 3.2 (2002): 135-148.
[19] : M. Sabourin, A. Mitiche, D. Thomas, G. Nagy, Classifier combination for handprinted digit recognition, International Conference on Document Analysis and Recognition (1993) 163–166.
[20] : L. I. Kuncheva, A theoretical study on six classifier fusion strategies, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2) (2002) 281–286.
[21] (1, 2) : B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.
[22] : Smith, Michael R., Tony Martinez, and Christophe Giraud-Carrier. "An instance level analysis of data complexity." Machine learning 95.2 (2014), pp 225-256.
[23] : P. C. Smits, Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection, IEEE Transactions on Geoscience and Remote Sensing 40 (4) (2002) 801–813.
[24] : García, S., Zhang, Z.L., Altalhi, A., Alshomrani, S. and Herrera, F., "Dynamic ensemble selection for multi-class imbalanced datasets." Information Sciences 445 (2018): 22-37.
[25] : Wolpert, David H. "Stacked generalization." Neural networks 5, no. 2 (1992): 241-259.
Owner
scikit-learn compatible projects
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 01, 2023
scikit-learn cross validators for iterative stratification of multilabel data

iterative-stratification iterative-stratification is a project that provides scikit-learn compatible cross validators with stratification for multilab

745 Jan 05, 2023
A Python library for dynamic classifier and ensemble selection

DESlib DESlib is an easy-to-use ensemble learning library focused on the implementation of the state-of-the-art techniques for dynamic classifier and

425 Dec 18, 2022
Topological Data Analysis for Python🐍

Scikit-TDA is a home for Topological Data Analysis Python libraries intended for non-topologists. This project aims to provide a curated library of TD

Scikit-TDA 373 Dec 24, 2022
(AAAI' 20) A Python Toolbox for Machine Learning Model Combination

combo: A Python Toolbox for Machine Learning Model Combination Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License

Yue Zhao 606 Dec 21, 2022
machine learning with logical rules in Python

skope-rules Skope-rules is a Python machine learning module built on top of scikit-learn and distributed under the 3-Clause BSD license. Skope-rules a

504 Dec 31, 2022
Large-scale linear classification, regression and ranking in Python

lightning lightning is a library for large-scale linear classification, regression and ranking in Python. Highlights: follows the scikit-learn API con

1.6k Dec 31, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 02, 2023
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

803 Jan 05, 2023
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

6.2k Jan 01, 2023
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

418 Jan 09, 2023
Data Analysis Baseline Library

dabl The data analysis baseline library. "Mr Sanchez, are you a data scientist?" "I dabl, Mr president." Find more information on the website. State o

Andreas Mueller 122 Dec 27, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 28, 2022
Multivariate imputation and matrix completion algorithms implemented in Python

A variety of matrix completion and imputation algorithms implemented in Python 3.6. To install: pip install fancyimpute Do not use conda. We don't sup

Alex Rubinsteyn 1.1k Dec 18, 2022
Extra blocks for scikit-learn pipelines.

scikit-lego We love scikit learn but very often we find ourselves writing custom transformers, metrics and models. The goal of this project is to atte

vincent d warmerdam 941 Dec 30, 2022
Fast solver for L1-type problems: Lasso, sparse Logisitic regression, Group Lasso, weighted Lasso, Multitask Lasso, etc.

celer Fast algorithm to solve Lasso-like problems with dual extrapolation. Currently, the package handles the following problems: Lasso weighted Lasso

168 Dec 13, 2022