Russian GPT3 models.

Overview

ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small and ruGPT2Large

This repository contains bunch of autoregressive transformer language models trained on a huge dataset of russian language.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Large) trained with 1024 sequence length.

We suggest using ruGPT2Large or ruGPT3XL because this models are well tested and achieve the best perplexity.

Usage examples are described in detail here.

Old version of code you can find here

Table of contents

Setup and usage

Models can be used for inference or finetuning with two ways: 🤗 HuggingFace interface or our code based on this implementation.

For both ways install transformers:

pip install transformers==3.5.0

HuggingFace interface

We support 🤗 HuggingFace interface only for ruGPT3Large, ruGPT3Medium, ruGPT3Small and ruGPT2Large models. For RuGPT3XL please use code in this repo because RuGPT3XL model was trained with sparse attention.

Here we can obtain examples of finetuning or generation.

Also this examples is adapted for google colab:

  • finetuning: finetuning
  • generation: generation

Basic usage:

from transformers import GPT2LMHeadModel, GPT2Tokenizer


model_name_or_path = "sberbank-ai/rugpt3large_based_on_gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(model_name_or_path).cuda()
text = "Александр Сергеевич Пушкин родился в "
input_ids = tokenizer.encode(text, return_tensors="pt").cuda()
out = model.generate(input_ids.cuda())
generated_text = list(map(tokenizer.decode, out))[0]
print(generated_text)
# Output should be like this:
# Александр Сергеевич Пушкин родился в \n1799 году. Его отец был крепостным крестьянином, а мать – крепостной крестьянкой. Детство и юность Пушкина прошли в деревне Михайловское под Петербургом. В 1820-х годах семья переехала

For more information about 🤗 HuggingFace interface please follow this documentation.

Data issues

For training pass single txt file.

Megatron interface

Without deepspeed

For using our code for finetuning without deepspeed (not recommended) we should install apex:

%%writefile setup.sh

export CUDA_HOME=/usr/local/cuda-10.1
git clone https://github.com/NVIDIA/apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./apex

sh setup.sh

Example of finetuning, generating and loading/convert megatron checkpoints here or Open In Colab

Note! This way is valid for all RuGPTs models except RuGPT3XL.

Megatron with deepspeed

For using our code for finetuning with deepspeed (recommended) we should install apex (see previous section) and deepspeed:

pip install deepspeed==0.3.7

Example of finetuning, generating and loading/convert megatron checkpoints here or Open In Colab

Note! For using deepspeed we should specify environ variable before all your python scripts and run with torch.distributed or mpi:

USE_DEEPSPEED=1 python -m torch.distributed.launch --nproc_per_node 1 ru-gpts/pretrain_gpt3.py \
  --train-data-path "train.list" \
  --test-data-path "valid.list" \
  --max-files-per-process 100 \
  --save model \
  --load-huggingface sberbank-ai/rugpt3small_based_on_gpt2 \
  --model-parallel-size 1 \
  --num-layers 12 \
  --hidden-size 768 \
  --num-attention-heads 12 \
  --seq-length 2048 \
  --max-position-embeddings 2048 \
  --fp16 \
  --checkpoint-activations \
  --deepspeed-activation-checkpointing \
  --deepspeed \
  --deepspeed_config ru-gpts/src/deepspeed_config/gpt3_small_2048.json
Data issues

We use custom implementation of distributed dataset. For training and evaluating we should specify file file.list with list of paths to txt files. All files from file.list will be splitted between aviable GPUs. The logic of splitting is described by the following code:

shard_size = len(files) // world_size
shard_start = rank * shard_size
shard_end = (rank + 1) * shard_size
files = files[shard_start:shard_end]

For more details please see full code of dataset: src.dataset_rugpt3.RuGpt3TextDataset and example.

Note! This way is valid for all RuGPTs models except RuGPT3XL.

Megatron with deepspeed and sparsity

This section is used mostly for usage of RuGPT3XL model and training models with sparse attention.

apt-get install llvm-9-dev
pip install cpufeature
pip install triton==0.2.3
DS_BUILD_CPU_ADAM=1 DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.3.7

Test installation of deepspeed you can with the following command: ds_report.

Example of inference of RuGPT3XL here or Open In Colab

Example of finetune, load finetuned model and generate is here.

For using sparse layers in model use --sparse-mode and specify key "sparse_attention" at deepspeed_config (RuGPT3XL config example). Modes can be: fixed, bigbird, bslongformer, variable, dense.

More information about sparse attention here.

Pretraining details

All pretraining was done on Nvidia Tesla V100-SXM3 32 Gb GPUs on a Christofari Cluster. Following are the details of pretraining for each model.

Pretraining ruGPT3XL

Model was trained with 512 sequence length using Deepspeed and Megatron code by SberDevices team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048.
Note! Model has sparse attention blocks.

Total training time was around 10 days on 256 GPUs.
Final perplexity on test set is 12.05.

🤗 HuggingFace model card link.

See more details for generation here or Open In Colab.

Example of finetune, load finetuned model and generate is here.

Our pretraining script here

Example of finetuning script here

Pretraining ruGPT3Large

Model was trained with sequence length 1024 using transformers lib by SberDevices team on 80B tokens for 3 epochs. After that model was finetuned 1 epoch with sequence length 2048.

Total training time was around 14 days on 128 GPUs for 1024 context and few days on 16 GPUs for 2048 context.
Final perplexity on test set is 13.6.

You can obtain this model by using transformers with model name sberbank-ai/rugpt3large_based_on_gpt2.

🤗 HuggingFace model card link

Our pretraining script here

Pretraining ruGPT3Medium

Model was trained with sequence length 1024 using transformers lib by SberDevices team on 80B tokens for 3 epoch. After that model was finetuned on 2048 context.

Total training time was around 16 days on 64 GPUs.
Final perplexity on test set is 17.4.

You can obtain this model by using transformers with model name sberbank-ai/rugpt3medium_based_on_gpt2.

🤗 HuggingFace model card link

Our pretraining script here

Pretraining ruGPT3Small

Model was trained with sequence length 1024 using transformers by SberDevices team on 80B tokens around 3 epoch. After that model was finetuned on 2048 context.

Total training time took around one week on 32 GPUs.

You can obtain this model by using transformers with model name sberbank-ai/rugpt3small_based_on_gpt2.

🤗 HuggingFace model card link

Our pretraining script here

Pretraining ruGPT2Large

Model was trained with sequence length 1024 using transformers by SberDevices team on 170Gb data on 64 GPUs 3 weeks.

You can obtain this model by using transformers with model name sberbank-ai/rugpt2large.

🤗 HuggingFace model card link

Advanced

Pretrained scripts (advanced)

Also we add pretraining scripts for all models (except RuGPT2Large). See scripts dir.

Note! All training params (such as lr, wd, ...) may was different while real training. This is just for example.

Convert checkpoint to HuggingFace

For converting megatron checkpoint to HuggingFace format use the following script (example for RuGPT3Small):

python convert2huggingface.py \
  --load /path/to/save/dir/ \
  --model-parallel-size 1 \
  --num-layers 12 \
  --hidden-size 768 \
  --num-attention-heads 12 \
  --max-position-embeddings 2048 \
  --tokenizer-path sberbank-ai/rugpt3small_based_on_gpt2 \
  --no-load-optim \
  --export-huggingface /path/to/converted/checkpoint

After converting we can use HuggingFace model:

from transformers import GPT2LMHeadModel
model = GPT2LMHeadModel.from_pretrained("/path/to/converted/checkpoint")

Note! Conversion is worked for all models except RuGPT3XL. For using of RuGPT3XL see example of inference of RuGPT3XL here or Open In Colab.

Owner
Sberbank AI
Sberbank AI
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023