Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Overview

Binomial Option Pricing Calculator

Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Background

A derivative is a financial instrument that derives its value from the price of an underlying asset. An option gives the owner the ability to buy or sell the underlying asset at pre-determined price. An option that allows the holder to buy the asset at the pre-determined price (also known as the exercise or strike price) is called a call option. An option that lets the owner sell the underlying asset at the strike price is called a put option. There are three key types of options, a European option allows the holder to exercise ('redeem') the option only at maturity of the option. An American option can be exercised any time before maturity. A Bermudan option is exercisable at pre-deteremined dates decided at the creation of the option.

The binomial pricing method is one of the three most common methods used to value options - the others being the Black-Scholes model and a Monte Carlo simulation. The method predicts the price of the underlying asset at intervals (branches) between now and maturity of the option contract. This creates a tree showing the price movements of the asset, which can be used to find the fair value of the option. Unlike Black-Scholes, the binomial method allows the intrinsic value of the option to be calculated prior to maturity, better representing the value of American and Bermudan options which have the option of early exercise.

Pricing options using this method is done by:

  1. Determining the magnitude that stock prices will rise or fall between each branch.
  2. Calculating the probability that the stock price will move upwards or downward.
  3. Forming the binomial stock price tree with the specified number of branches.
  4. Calculate the payoff of the option at maturity.
  5. Working backwards, value the option by discounting the value of the option at the following nodes using. If the option is American or Bermudan and exercisible at that branch, then the value of the option if it was exercised is calculated, if it is greater than the discoutned value, it becomes the calculated value of the branch.
  6. The value derived at the top of the tree is the fair value of the option today.

Features of the Script

  • Does not require any libraries - it will work in base python3 and immune to changes in libraries
  • Option type is specified as a parameter allowing easy implementations
  • Returns and displays the calculated stock tree

The following assumptions are made by the model:

  • No dividends are paid across the option's life
  • Risk-Free rate is constant across the option's life
  • The price will move up or down each period

Variables and Paramaters

The variables required are:

Name Symbol Description
Stock Price s The current price of the underlying asset (time 0)
Exercise Price x The strike price of the option contract
Time to Maturity t The time until maturity of the option contract (in years)
Risk-Free Rate r The current risk-free rate
Branches/Steps b The number of branches used to value the option
Volatility v The volatility of the price movements in the underlying asset

Optional variables are:

Name Symbol Description
Option Nationality nat 'A' for American (default), 'B' for Bermudan, 'E' for European
Option Type typ 'C' for Call (default), 'P' for Put
Print Results prnt True to enable printing (default), False to disable
Exercisible Periods exP The branches that a Bermudan option can be exercised

Related Projects

Beta calculator with stock data downloader: https://github.com/sammuhrai/beta-calculator

Disclaimer

Script is for educational purposes and is not to be taken as financial advice.

Owner
sammuhrai
sammuhrai
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

📈 Statistical Quality Control 📉 This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Churn prediction with PySpark

It is expected to develop a machine learning model that can predict customers who will leave the company.

3 Aug 13, 2021
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
A columnar data container that can be compressed.

Unmaintained Package Notice Unfortunately, and due to lack of resources, the Blosc Development Team is unable to maintain this package anymore. During

944 Dec 09, 2022