Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios

Related tags

Miscellaneousikaros
Overview

Ikaros

Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build portfolios

How to use

Stock

The Stock object is a representation of all information what is available for a given security. For example for AAPL we scrape information from -

  1. https://finviz.com/quote.ashx?t=AAPL
  2. https://www.zacks.com/stock/research/AAPL/earnings-announcements

We also use the Yahoo Finance Library: yahooquery (GitHub link - https://github.com/dpguthrie/yahooquery ) to get fundamental data and price data.

>>>> from Stock import Stock
>>>> aapl = Stock('AAPL')
>>>> aapl.financial_data
             AccountsPayable  ...  WorkingCapital
ReleaseDate                   ...                
2020-01-28      4.511100e+10  ...    6.107000e+10
2020-04-30      3.242100e+10  ...    4.765900e+10
2020-07-30      3.532500e+10  ...    4.474700e+10
2020-10-29      4.229600e+10  ...    3.832100e+10
2021-01-27      6.384600e+10  ...    2.159900e+10

[5 rows x 129 columns]

>>>> aapl['PriceClose']
date
2018-02-15     41.725037
2018-02-16     41.589962
2018-02-20     41.450069
2018-02-21     41.261936
2018-02-22     41.606850
   
2021-02-08    136.910004
2021-02-09    136.009995
2021-02-10    135.389999
2021-02-11    135.130005
2021-02-12    135.369995
Name: PriceClose, Length: 754, dtype: float6

Mix and match market data with fundamental data directly. Ikaros uses the earnings calendar from Zacks to get an accurate Point in time, timeseries from fundamental data.

>>>> aapl['PriceClose'] / aapl['TotalRevenue']
date
2018-02-15             NaN
2018-02-16             NaN
2018-02-20             NaN
2018-02-21             NaN
2018-02-22             NaN
    
2021-02-08    1.228565e-09
2021-02-09    1.220488e-09
2021-02-10    1.214925e-09
2021-02-11    1.212592e-09
2021-02-12    1.214745e-09
Length: 754, dtype: float64

Ikaros also caches the data webscraped into readable csv files. If you want to save the data in a custom location, ensure that the enviornment variable IKAROSDATA is set on your operating system.

Signal

The Signal Library is repository of functions that provide useful insights into stocks. We have a limited number of signals so far but stay tuned! for more

>>>> from Signals import Quick_Ratio_Signal
>>>> ford = Stock('F')
>>>> Quick_Ratio_Signal(ford)
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    1.089966
2021-02-09    1.089966
2021-02-10    1.089966
2021-02-11    1.089966
2021-02-12    1.089966
Length: 754, dtype: float64

>>>> from SignalTransformers import Z_Score
>>>> Z_Score(Quick_Ratio_Signal(ford), window = 21) # Computes the rolling 21 day Z-score
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    4.248529
2021-02-09    2.924038
2021-02-10    2.320201
2021-02-11    1.949359
2021-02-12    1.688194
Length: 754, dtype: float64

Portfolio

Finally, use the signals and stock objects to construct Portfolios yourself. Currently we have

  1. Pair Trading Portfolio for 2 Stocks and a Signal
  2. Single Signal Portfolio for multiple Sotcks given a Signal
  3. A basic implementation of the Black Litterman Model

For a PairTradingPortfolio, lets look at GM and Ford and compare the two based on the Quick Ratio

>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal
>>>> from Portfolio import PairTradingPortfolio
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> ptp = PairTradingPortfolio(stock_obj1=ford, stock_obj2=gm, signal_func=Quick_Ratio_Signal)
>>>> ptp.relative_differencing() # The weights are set based on the rolling z-score of the difference of the signals for the 2 stocks
>>>> ptp.get_returns()
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08   -0.033217
2021-02-09    0.037791
2021-02-10    0.005568
2021-02-11   -0.001001
2021-02-12   -0.001700
Length: 754, dtype: float64
>>>> ptp.stock_obj1_wght_ts # Get the weight of Stock 1 ( Weight of stock 2 is just -1 times weight of stock 1)
Out[9]: 
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    0.814045
2021-02-09    0.818967
2021-02-10    0.823901
2021-02-11    0.909396
2021-02-12    0.910393
Length: 754, dtype: float64

For a SingleSignalPortfolio, lets look at FaceBook, Microsfot and Apple and compare them based on the Price to Sales Ratio.

>>>> from Stock import Stock
>>>> from Signals import Price_to_Sales_Signal
>>>> from Portfolio import SingleSignalPortfolio
>>>> from SignalTransformers import Z_Score
>>>> fb = Stock('FB')
>>>> msft = Stock('MSFT')
>>>> aapl = Stock('AAPL')
>>>> signal_func = lambda stock_obj : Z_Score(Price_to_Sales_Signal(stock_obj), window=42) # Use a rolling Z score over 42 days rather than the raw ratio
>>>> ssp.relative_ranking() # Rank the stock from -1 to +1, in this case we have 3 stocks it will be {-1, 0, 1}, if we have 4 sotck it would be {-1, -0.33, 0.33, 1}
>>>> ssp.weight_df
             FB  MSFT  AAPL
date                       
2018-02-15  0.0   0.0   0.0
2018-02-16  0.0   0.0   0.0
2018-02-20  0.0   0.0   0.0
2018-02-21  0.0   0.0   0.0
2018-02-22  0.0   0.0   0.0
        ...   ...   ...
2021-02-08  0.0   1.0  -1.0
2021-02-09  0.0   1.0  -1.0
2021-02-10  0.0   1.0  -1.0
2021-02-11  0.0   1.0  -1.0
2021-02-12  0.0   1.0  -1.0

[754 rows x 3 columns]
>>>> ssp.get_returns() # Initial values are 0 since signal is not available at the start for any of the stocks
date
2018-02-15    0.000000
2018-02-16    0.000000
2018-02-20    0.000000
2018-02-21    0.000000
2018-02-22    0.000000
  
2021-02-08    0.000018
2021-02-09    0.011935
2021-02-10    0.000661
2021-02-11    0.008798
2021-02-12    0.000269
Length: 754, dtype: float64

For a SimpleBlackLitterman, we can provide multiple stocks and multiple signals. Let us try to look at Ford, GM and Toyota based on the Price to Sales and Quick Ratio

>>>> from datetime import datetime
>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal, Price_to_Sales_Signal
>>>> from Portfolio import SimpleBlackLitterman
>>>> from SignalTransformers import Z_Score
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> toyota = Stock('TM')
>>>> signal_func1 = lambda stock_obj: Quick_Ratio_Signal(stock_obj) # Use the Raw quick Ratio
>>>> signal_func2 = lambda stock_obj: Z_Score(-1*Price_to_Sales_Signal(stock_obj), window=63) # Use the moving 63 Z score for Price to Sales. -1 to Flip the signal
>>>> signal_view_ret_arr = [0.02, 0.01] # Expected returns from each signal. Typically denoted as Q
>>>> sbl = SimpleBlackLitterman(stock_arr=[ford, gm, toyota], signal_func_arr=[signal_func1, signal_func2], signal_view_ret_arr=signal_view_ret_arr)
>>>> dt = datetime(2021, 2, 12).date()
>>>> sbl.weights_df # Weights based on MarketCap
                   F        GM        TM
date                                    
2020-02-07  0.059205  0.085642  0.855153
2020-02-10  0.059145  0.087673  0.853182
2020-02-11  0.059010  0.088974  0.852016
2020-02-12  0.059782  0.089820  0.850399
2020-02-13  0.060360  0.090068  0.849572
             ...       ...       ...
2021-02-08  0.075640  0.127209  0.797151
2021-02-09  0.077582  0.124607  0.797810
2021-02-10  0.073859  0.117810  0.808331
2021-02-11  0.073232  0.116954  0.809814
2021-02-12  0.072642  0.116230  0.811128

[257 rows x 3 columns]
>>>> sbl.var_covar_ts[dt] # Variance Covariance Martix computed based on rolling 126 days of returns, var_covar_ts is a dict of dataframes. Typically denoted as Sigma
           F        GM        TM
F   0.140825  0.085604  0.021408
GM  0.085604  0.197158  0.020909
TM  0.021408  0.020909  0.044832
>>>> sbl.implied_returns_df # Implied Returns for each day. This is often denoted as Pi
                   F        GM        TM
2020-02-10  0.012125  0.016345  0.014762
2020-02-11  0.012131  0.016199  0.014818
2020-02-12  0.011994  0.016279  0.014773
2020-02-13  0.012199  0.016374  0.014645
2020-02-14  0.011042  0.014466  0.013649
             ...       ...       ...
2021-02-08  0.038776  0.047958  0.037335
2021-02-09  0.039060  0.049541  0.037451
2021-02-10  0.038827  0.048351  0.037453
2021-02-11  0.036424  0.045034  0.040050
2021-02-12  0.037661  0.046260  0.040319

[256 rows x 3 columns]
>>>> sbl.link_mat_ts[dt] # The link matrix on a given day. link_mat_ts is a dict of dataframes. Typically denoted as Sigma
            F   GM   TM
signal_0  1.0 -1.0  0.0
signal_1 -1.0  0.0  1.0
>>>> sbl.view_var_covar_ts[dt] # The View variance covariance matrix on a given day. view_var_covar_ts is a dict of dataframes. Typically denoted as Omega
          signal_0  signal_1
signal_0  0.166775 -0.043777
signal_1 -0.043777  0.142840
>>>> sbl.black_litterman_weights_df # The Black litterman weights over time, based on the changing views
                   F        GM        TM
2020-05-07  0.077305  0.127350  0.795345
2020-05-08  0.077354  0.130177  0.792469
2020-05-11  0.077862  0.132684  0.789454
2020-05-12  0.065264  0.071459  0.863277
2020-05-13  0.114959  0.074012  0.811028
             ...       ...       ...
2021-02-08  0.116730  0.123745  0.759526
2021-02-09  0.116043  0.127209  0.756747
2021-02-10  0.149960  0.232889  0.617152
2021-02-11  0.109802 -0.032208  0.922406
2021-02-12  0.107529 -0.033443  0.925915
Owner
Salma Saidane
Salma Saidane
Multi-Probe Attention for Semantic Indexing

Multi-Probe Attention for Semantic Indexing About This project is developed for the topic of COVID-19 semantic indexing. Directories & files A. The di

Jinghang Gu 1 Dec 18, 2022
Basic cryptography done in Python for study purposes

criptografia Criptografia básica feita em Python para fins de estudo Converte letras em numeros partindo do indice 0 e vice-versa A criptografia é fei

Carlos Eduardo 2 Dec 05, 2021
Simple web application, which has a single endpoint, dedicated to annotation parsing and convertion.

Simple web application, which has a single endpoint, dedicated to annotation parsing and conversion.

Pavel Paranin 1 Nov 01, 2021
Hotpile: High Order Turing Machine Language Compiler

Hotpile: High Order Turing Machine Language Compiler Build and Run Requirements: Python 3.6+, bison, flex, and GCC installed. Needs to be run under UN

Jiang Weihao 4 Dec 29, 2021
Consulta cpf fds

Consulta-cpf Consulta cpf fds Instalação: apt-get update -y

Moleey 1 Nov 24, 2021
This is a Blender 2.9 script for importing mixamo Models to Godot-3

Mixamo-To-Godot This is a Blender 2.9 script for importing mixamo Models to Godot-3 The script does the following things Imports the mixamo models fro

8 Sep 02, 2022
Writeup and scripts for the 2021 malwarebytes crackme

Malwarebytes Crackme 2021 Tools and environment setup We will be doing this analysis in a Windows 10 VM with the flare-vm tools installed. Most of the

Jerome Leow 9 Dec 02, 2022
A male and female dog names python package

A male and female dog names python package

Fayas Noushad 3 Dec 12, 2021
一个IDA脚本,可以检测出哈希算法(无论是否魔改常数)并生成frida hook 代码。

findhash 在哈希算法上,比Findcrypt更好的检测工具,同时生成Frida hook代码。 使用方法 把findhash.xml和findhash.py扔到ida plugins目录下 ida -edit-plugin-findhash 试图解决的问题 哈希函数的初始化魔数被修改 想快速

266 Dec 29, 2022
It converts ING BANK account historic into a csv file you can import in HomeBank application.

ing2homebank It converts your ING Bank account historic csv file into another csv file you can import in HomeBank application

1 Feb 14, 2022
Small scripts to learn about GNOME internals

gnome-hacks This is a collection of APIs that allow programmatic manipulation of the GNOME shell. If you use GNOME (the default graphical shell in Ubu

Alex Nichol 5 Oct 22, 2021
Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies

pyshader Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies Fully programmable shader model (even

Alastair Cota 1 Jan 11, 2022
A few of my adventures with Devito.

Devito-playbox A few of my adventures with Devito. This repository contains a few notebooks and scripts that will lead me in the road of learning this

Átila Saraiva Quintela Soares 1 Feb 08, 2022
A tool to determine optimal projects for Gridcoin crunchers. Maximize your magnitude!

FindTheMag FindTheMag helps optimize your BOINC client for Gridcoin mining. You can group BOINC projects into two groups: "preferred" projects and "mi

7 Oct 04, 2022
Download and process GOES-16 and GOES-17 data from NOAA's archive on AWS using Python.

Download and display GOES-East and GOES-West data GOES-East and GOES-West satellite data are made available on Amazon Web Services through NOAA's Big

Brian Blaylock 88 Dec 16, 2022
Ningyu Jia(nj2459)/Mengyin Ma(mm5937) Call Analysis group project(Group 36)

Group and Section Group 36 Section 001 name and UNI Name UNI Ningyu Jia nj2459 Mengyin Ma mm5937 code explanation Parking.py (1) Calculate the rate of

1 Dec 04, 2021
An example repository for how to generate results using PyBaMM

PyBaMM results This repository provides a template for generating results (for example, for a paper) using PyBaMM Installation Install PyBaMM using a

PyBaMM Team 7 Oct 09, 2022
Performance data for WASM SIMD instructions.

WASM SIMD Data This repository contains code and data which can be used to generate a JSON file containing information about the WASM SIMD proposal. F

Evan Nemerson 5 Jul 24, 2022
rebalance is a simple Python 3.9+ library for rebalancing investment portfolios

rebalance rebalance is a simple Python 3.9+ library for rebalancing investment portfolios. It supports cash flow rebalancing with contributions and wi

Darik Harter 5 Feb 26, 2022
Traits for Python3

Do you like Python, but think that multiple inheritance is a bit too flexible? Are you looking for a more constrained way to define interfaces and re-use code?

121 Nov 15, 2022