Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios

Related tags

Miscellaneousikaros
Overview

Ikaros

Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build portfolios

How to use

Stock

The Stock object is a representation of all information what is available for a given security. For example for AAPL we scrape information from -

  1. https://finviz.com/quote.ashx?t=AAPL
  2. https://www.zacks.com/stock/research/AAPL/earnings-announcements

We also use the Yahoo Finance Library: yahooquery (GitHub link - https://github.com/dpguthrie/yahooquery ) to get fundamental data and price data.

>>>> from Stock import Stock
>>>> aapl = Stock('AAPL')
>>>> aapl.financial_data
             AccountsPayable  ...  WorkingCapital
ReleaseDate                   ...                
2020-01-28      4.511100e+10  ...    6.107000e+10
2020-04-30      3.242100e+10  ...    4.765900e+10
2020-07-30      3.532500e+10  ...    4.474700e+10
2020-10-29      4.229600e+10  ...    3.832100e+10
2021-01-27      6.384600e+10  ...    2.159900e+10

[5 rows x 129 columns]

>>>> aapl['PriceClose']
date
2018-02-15     41.725037
2018-02-16     41.589962
2018-02-20     41.450069
2018-02-21     41.261936
2018-02-22     41.606850
   
2021-02-08    136.910004
2021-02-09    136.009995
2021-02-10    135.389999
2021-02-11    135.130005
2021-02-12    135.369995
Name: PriceClose, Length: 754, dtype: float6

Mix and match market data with fundamental data directly. Ikaros uses the earnings calendar from Zacks to get an accurate Point in time, timeseries from fundamental data.

>>>> aapl['PriceClose'] / aapl['TotalRevenue']
date
2018-02-15             NaN
2018-02-16             NaN
2018-02-20             NaN
2018-02-21             NaN
2018-02-22             NaN
    
2021-02-08    1.228565e-09
2021-02-09    1.220488e-09
2021-02-10    1.214925e-09
2021-02-11    1.212592e-09
2021-02-12    1.214745e-09
Length: 754, dtype: float64

Ikaros also caches the data webscraped into readable csv files. If you want to save the data in a custom location, ensure that the enviornment variable IKAROSDATA is set on your operating system.

Signal

The Signal Library is repository of functions that provide useful insights into stocks. We have a limited number of signals so far but stay tuned! for more

>>>> from Signals import Quick_Ratio_Signal
>>>> ford = Stock('F')
>>>> Quick_Ratio_Signal(ford)
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    1.089966
2021-02-09    1.089966
2021-02-10    1.089966
2021-02-11    1.089966
2021-02-12    1.089966
Length: 754, dtype: float64

>>>> from SignalTransformers import Z_Score
>>>> Z_Score(Quick_Ratio_Signal(ford), window = 21) # Computes the rolling 21 day Z-score
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    4.248529
2021-02-09    2.924038
2021-02-10    2.320201
2021-02-11    1.949359
2021-02-12    1.688194
Length: 754, dtype: float64

Portfolio

Finally, use the signals and stock objects to construct Portfolios yourself. Currently we have

  1. Pair Trading Portfolio for 2 Stocks and a Signal
  2. Single Signal Portfolio for multiple Sotcks given a Signal
  3. A basic implementation of the Black Litterman Model

For a PairTradingPortfolio, lets look at GM and Ford and compare the two based on the Quick Ratio

>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal
>>>> from Portfolio import PairTradingPortfolio
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> ptp = PairTradingPortfolio(stock_obj1=ford, stock_obj2=gm, signal_func=Quick_Ratio_Signal)
>>>> ptp.relative_differencing() # The weights are set based on the rolling z-score of the difference of the signals for the 2 stocks
>>>> ptp.get_returns()
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08   -0.033217
2021-02-09    0.037791
2021-02-10    0.005568
2021-02-11   -0.001001
2021-02-12   -0.001700
Length: 754, dtype: float64
>>>> ptp.stock_obj1_wght_ts # Get the weight of Stock 1 ( Weight of stock 2 is just -1 times weight of stock 1)
Out[9]: 
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    0.814045
2021-02-09    0.818967
2021-02-10    0.823901
2021-02-11    0.909396
2021-02-12    0.910393
Length: 754, dtype: float64

For a SingleSignalPortfolio, lets look at FaceBook, Microsfot and Apple and compare them based on the Price to Sales Ratio.

>>>> from Stock import Stock
>>>> from Signals import Price_to_Sales_Signal
>>>> from Portfolio import SingleSignalPortfolio
>>>> from SignalTransformers import Z_Score
>>>> fb = Stock('FB')
>>>> msft = Stock('MSFT')
>>>> aapl = Stock('AAPL')
>>>> signal_func = lambda stock_obj : Z_Score(Price_to_Sales_Signal(stock_obj), window=42) # Use a rolling Z score over 42 days rather than the raw ratio
>>>> ssp.relative_ranking() # Rank the stock from -1 to +1, in this case we have 3 stocks it will be {-1, 0, 1}, if we have 4 sotck it would be {-1, -0.33, 0.33, 1}
>>>> ssp.weight_df
             FB  MSFT  AAPL
date                       
2018-02-15  0.0   0.0   0.0
2018-02-16  0.0   0.0   0.0
2018-02-20  0.0   0.0   0.0
2018-02-21  0.0   0.0   0.0
2018-02-22  0.0   0.0   0.0
        ...   ...   ...
2021-02-08  0.0   1.0  -1.0
2021-02-09  0.0   1.0  -1.0
2021-02-10  0.0   1.0  -1.0
2021-02-11  0.0   1.0  -1.0
2021-02-12  0.0   1.0  -1.0

[754 rows x 3 columns]
>>>> ssp.get_returns() # Initial values are 0 since signal is not available at the start for any of the stocks
date
2018-02-15    0.000000
2018-02-16    0.000000
2018-02-20    0.000000
2018-02-21    0.000000
2018-02-22    0.000000
  
2021-02-08    0.000018
2021-02-09    0.011935
2021-02-10    0.000661
2021-02-11    0.008798
2021-02-12    0.000269
Length: 754, dtype: float64

For a SimpleBlackLitterman, we can provide multiple stocks and multiple signals. Let us try to look at Ford, GM and Toyota based on the Price to Sales and Quick Ratio

>>>> from datetime import datetime
>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal, Price_to_Sales_Signal
>>>> from Portfolio import SimpleBlackLitterman
>>>> from SignalTransformers import Z_Score
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> toyota = Stock('TM')
>>>> signal_func1 = lambda stock_obj: Quick_Ratio_Signal(stock_obj) # Use the Raw quick Ratio
>>>> signal_func2 = lambda stock_obj: Z_Score(-1*Price_to_Sales_Signal(stock_obj), window=63) # Use the moving 63 Z score for Price to Sales. -1 to Flip the signal
>>>> signal_view_ret_arr = [0.02, 0.01] # Expected returns from each signal. Typically denoted as Q
>>>> sbl = SimpleBlackLitterman(stock_arr=[ford, gm, toyota], signal_func_arr=[signal_func1, signal_func2], signal_view_ret_arr=signal_view_ret_arr)
>>>> dt = datetime(2021, 2, 12).date()
>>>> sbl.weights_df # Weights based on MarketCap
                   F        GM        TM
date                                    
2020-02-07  0.059205  0.085642  0.855153
2020-02-10  0.059145  0.087673  0.853182
2020-02-11  0.059010  0.088974  0.852016
2020-02-12  0.059782  0.089820  0.850399
2020-02-13  0.060360  0.090068  0.849572
             ...       ...       ...
2021-02-08  0.075640  0.127209  0.797151
2021-02-09  0.077582  0.124607  0.797810
2021-02-10  0.073859  0.117810  0.808331
2021-02-11  0.073232  0.116954  0.809814
2021-02-12  0.072642  0.116230  0.811128

[257 rows x 3 columns]
>>>> sbl.var_covar_ts[dt] # Variance Covariance Martix computed based on rolling 126 days of returns, var_covar_ts is a dict of dataframes. Typically denoted as Sigma
           F        GM        TM
F   0.140825  0.085604  0.021408
GM  0.085604  0.197158  0.020909
TM  0.021408  0.020909  0.044832
>>>> sbl.implied_returns_df # Implied Returns for each day. This is often denoted as Pi
                   F        GM        TM
2020-02-10  0.012125  0.016345  0.014762
2020-02-11  0.012131  0.016199  0.014818
2020-02-12  0.011994  0.016279  0.014773
2020-02-13  0.012199  0.016374  0.014645
2020-02-14  0.011042  0.014466  0.013649
             ...       ...       ...
2021-02-08  0.038776  0.047958  0.037335
2021-02-09  0.039060  0.049541  0.037451
2021-02-10  0.038827  0.048351  0.037453
2021-02-11  0.036424  0.045034  0.040050
2021-02-12  0.037661  0.046260  0.040319

[256 rows x 3 columns]
>>>> sbl.link_mat_ts[dt] # The link matrix on a given day. link_mat_ts is a dict of dataframes. Typically denoted as Sigma
            F   GM   TM
signal_0  1.0 -1.0  0.0
signal_1 -1.0  0.0  1.0
>>>> sbl.view_var_covar_ts[dt] # The View variance covariance matrix on a given day. view_var_covar_ts is a dict of dataframes. Typically denoted as Omega
          signal_0  signal_1
signal_0  0.166775 -0.043777
signal_1 -0.043777  0.142840
>>>> sbl.black_litterman_weights_df # The Black litterman weights over time, based on the changing views
                   F        GM        TM
2020-05-07  0.077305  0.127350  0.795345
2020-05-08  0.077354  0.130177  0.792469
2020-05-11  0.077862  0.132684  0.789454
2020-05-12  0.065264  0.071459  0.863277
2020-05-13  0.114959  0.074012  0.811028
             ...       ...       ...
2021-02-08  0.116730  0.123745  0.759526
2021-02-09  0.116043  0.127209  0.756747
2021-02-10  0.149960  0.232889  0.617152
2021-02-11  0.109802 -0.032208  0.922406
2021-02-12  0.107529 -0.033443  0.925915
Owner
Salma Saidane
Salma Saidane
kodi addon 115网盘

plugin.video.115 kodi addon 115网盘 插件,需要kodi 18以上版本,原码播放需配合 https://github.com/feelfar/115proxy-for-kodi 使用 安装 HEAD 由于release包尚未释出,可直接下载源代码zip包

109 Dec 29, 2022
Transform a Google Drive server into a VFX pipeline ready server

Google Drive VFX Server VFX Pipeline About The Project Quick tutorial to setup a Google Drive Server for multiple machines access, and VFX Pipeline on

Valentin Beaumont 17 Jun 27, 2022
Film-dosimetry - Film dosimetry for DUVS

film-dosimetry Film dosimetry for DUVS Hi David and Joe, here we go this is a te

Christine L Kuryla 3 Jan 20, 2022
Web app to find your chance of winning at Texas Hold 'Em

poker_mc Web app to find your chance of winning at Texas Hold 'Em A working version of this project is deployed at poker-mc.ue.r.appspot.com. It's run

Aadith Vittala 7 Sep 15, 2021
Replay Felica Exchange For Python

FelicaReplay Replay Felica Exchange Description Standalone Replay Module Usage Save FelicaRelay (=2.0) output to file, then python replay.py [FILE].

3 Jul 14, 2022
京东自动入会获取京豆

京东入会领京豆 要求 有一定的电脑知识 or 有耐心爱折腾 需要Chrome(推荐)、Edge(Chromium)、Firefox 操作系统需是Mac(本人没在m1上测试)、Linux(在deepin上测试过)、Windows 安装方法 脚本采用Selenium遍历京东入会有礼界面,由于遍历了200

Vanke Anton 500 Dec 22, 2022
Some ideas and tools to develop Python 3.8 plugins for GIMP 2.99.4

gimp-python-development Some ideas and tools to develop Python 3.8 plugins for GIMP 2.99.4. GIMP 2.99.4 is the latest unstable pre-release of GIMP 3.

Ismael Benito 53 Sep 25, 2022
Mpis-ex7 - Implementation of tasks 1, 2, 3 for Metody Probabilistyczne i Statystyka Lista 7

Implementations of task 1, 2 and 3 from here Author: Maciej Bazela Index: 261743 Each task was implemented in Python 3. I've used Cython to speed up e

Maciej Bazela 1 Feb 27, 2022
Create a simple program by applying the use of class

TUGAS PRAKTIKUM 8 💻 Nama : Achmad Mahfud NIM : 312110520 Kelas : TI.21.C5 Perintah : Buat program sederhana dengan mengaplikasikan pengguna

Achmad Mahfud 1 Dec 23, 2021
i3wm helper tool for workspaces on multiple monitors

i3screens A helper tool for managing i3wm workspaces on multiple monitors. Use-case You have a multi-monitor setup and want to have the "same" workspa

Sebastian Neef 1 Dec 05, 2022
A webapp for taking fast notes, designed for business, school, and collaboration with groups.

JOTS Journal of the Session A webapp for taking fast notes, designed for business, school, and collaboration with groups.

Zebadiah S. Taylor 2 Jun 10, 2022
This is an implementation of NeuronJ work with python.

NeuronJ This is an implementation of NeuronJ work with python. NeuronJ is a plug-in for ImageJ that allows you to create and edit neurons masks. Image

Mohammad Mahdi Samei 3 Aug 28, 2022
Zotero references script (and app)

A little script (and PyInstaller build) for a very specific, somewhat hack-ish purpose: managing and exporting project references with Zotero and its API.

Marius Rödder 0 Dec 05, 2021
Anki Addon idea by gbrl.sc to see previous ratings of a card in the reviewer

Card History At A Glance Stop having to press card browser and ctrl+i for every card and then WINCING to see it's history of reviews FEATURES Visualiz

Jerry Zhou 11 Dec 19, 2022
Simple calculator with random number button and dark gray theme created with PyQt6

Calculator Application Simple calculator with random number button and dark gray theme created with : PyQt6 Python 3.9.7 you can download the dark gra

Flamingo 2 Mar 07, 2022
Developed a website to analyze and generate report of students based on the curriculum that represents student’s academic performance.

Developed a website to analyze and generate report of students based on the curriculum that represents student’s academic performance. We have developed the system such that, it will automatically pa

VIJETA CHAVHAN 3 Nov 08, 2022
Create N Share is a No Code solution which gives users the ability to create any type of feature rich survey forms with ease.

create n share Note : The Project Scaffold will be pushed soon. Create N Share is a No Code solution which gives users the ability to create any type

Chiraag Kakar 11 Dec 03, 2022
🏆 A ranked list of awesome Python open-source libraries and tools. Updated weekly.

Best-of Python 🏆 A ranked list of awesome Python open-source libraries & tools. Updated weekly. This curated list contains 230 awesome open-source pr

Machine Learning Tooling 2.7k Jan 03, 2023
NCAR/UCAR virtual Python Tutorial Seminar Series lesson on MetPy.

The Project Pythia Python Tutorial Seminar Series continues with a lesson on MetPy on Wednesday, 2 February 2022 at 1 PM Mountain Standard Time.

Project Pythia Tutorials 6 Oct 09, 2022