Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios

Related tags

Miscellaneousikaros
Overview

Ikaros

Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build portfolios

How to use

Stock

The Stock object is a representation of all information what is available for a given security. For example for AAPL we scrape information from -

  1. https://finviz.com/quote.ashx?t=AAPL
  2. https://www.zacks.com/stock/research/AAPL/earnings-announcements

We also use the Yahoo Finance Library: yahooquery (GitHub link - https://github.com/dpguthrie/yahooquery ) to get fundamental data and price data.

>>>> from Stock import Stock
>>>> aapl = Stock('AAPL')
>>>> aapl.financial_data
             AccountsPayable  ...  WorkingCapital
ReleaseDate                   ...                
2020-01-28      4.511100e+10  ...    6.107000e+10
2020-04-30      3.242100e+10  ...    4.765900e+10
2020-07-30      3.532500e+10  ...    4.474700e+10
2020-10-29      4.229600e+10  ...    3.832100e+10
2021-01-27      6.384600e+10  ...    2.159900e+10

[5 rows x 129 columns]

>>>> aapl['PriceClose']
date
2018-02-15     41.725037
2018-02-16     41.589962
2018-02-20     41.450069
2018-02-21     41.261936
2018-02-22     41.606850
   
2021-02-08    136.910004
2021-02-09    136.009995
2021-02-10    135.389999
2021-02-11    135.130005
2021-02-12    135.369995
Name: PriceClose, Length: 754, dtype: float6

Mix and match market data with fundamental data directly. Ikaros uses the earnings calendar from Zacks to get an accurate Point in time, timeseries from fundamental data.

>>>> aapl['PriceClose'] / aapl['TotalRevenue']
date
2018-02-15             NaN
2018-02-16             NaN
2018-02-20             NaN
2018-02-21             NaN
2018-02-22             NaN
    
2021-02-08    1.228565e-09
2021-02-09    1.220488e-09
2021-02-10    1.214925e-09
2021-02-11    1.212592e-09
2021-02-12    1.214745e-09
Length: 754, dtype: float64

Ikaros also caches the data webscraped into readable csv files. If you want to save the data in a custom location, ensure that the enviornment variable IKAROSDATA is set on your operating system.

Signal

The Signal Library is repository of functions that provide useful insights into stocks. We have a limited number of signals so far but stay tuned! for more

>>>> from Signals import Quick_Ratio_Signal
>>>> ford = Stock('F')
>>>> Quick_Ratio_Signal(ford)
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    1.089966
2021-02-09    1.089966
2021-02-10    1.089966
2021-02-11    1.089966
2021-02-12    1.089966
Length: 754, dtype: float64

>>>> from SignalTransformers import Z_Score
>>>> Z_Score(Quick_Ratio_Signal(ford), window = 21) # Computes the rolling 21 day Z-score
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    4.248529
2021-02-09    2.924038
2021-02-10    2.320201
2021-02-11    1.949359
2021-02-12    1.688194
Length: 754, dtype: float64

Portfolio

Finally, use the signals and stock objects to construct Portfolios yourself. Currently we have

  1. Pair Trading Portfolio for 2 Stocks and a Signal
  2. Single Signal Portfolio for multiple Sotcks given a Signal
  3. A basic implementation of the Black Litterman Model

For a PairTradingPortfolio, lets look at GM and Ford and compare the two based on the Quick Ratio

>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal
>>>> from Portfolio import PairTradingPortfolio
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> ptp = PairTradingPortfolio(stock_obj1=ford, stock_obj2=gm, signal_func=Quick_Ratio_Signal)
>>>> ptp.relative_differencing() # The weights are set based on the rolling z-score of the difference of the signals for the 2 stocks
>>>> ptp.get_returns()
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08   -0.033217
2021-02-09    0.037791
2021-02-10    0.005568
2021-02-11   -0.001001
2021-02-12   -0.001700
Length: 754, dtype: float64
>>>> ptp.stock_obj1_wght_ts # Get the weight of Stock 1 ( Weight of stock 2 is just -1 times weight of stock 1)
Out[9]: 
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    0.814045
2021-02-09    0.818967
2021-02-10    0.823901
2021-02-11    0.909396
2021-02-12    0.910393
Length: 754, dtype: float64

For a SingleSignalPortfolio, lets look at FaceBook, Microsfot and Apple and compare them based on the Price to Sales Ratio.

>>>> from Stock import Stock
>>>> from Signals import Price_to_Sales_Signal
>>>> from Portfolio import SingleSignalPortfolio
>>>> from SignalTransformers import Z_Score
>>>> fb = Stock('FB')
>>>> msft = Stock('MSFT')
>>>> aapl = Stock('AAPL')
>>>> signal_func = lambda stock_obj : Z_Score(Price_to_Sales_Signal(stock_obj), window=42) # Use a rolling Z score over 42 days rather than the raw ratio
>>>> ssp.relative_ranking() # Rank the stock from -1 to +1, in this case we have 3 stocks it will be {-1, 0, 1}, if we have 4 sotck it would be {-1, -0.33, 0.33, 1}
>>>> ssp.weight_df
             FB  MSFT  AAPL
date                       
2018-02-15  0.0   0.0   0.0
2018-02-16  0.0   0.0   0.0
2018-02-20  0.0   0.0   0.0
2018-02-21  0.0   0.0   0.0
2018-02-22  0.0   0.0   0.0
        ...   ...   ...
2021-02-08  0.0   1.0  -1.0
2021-02-09  0.0   1.0  -1.0
2021-02-10  0.0   1.0  -1.0
2021-02-11  0.0   1.0  -1.0
2021-02-12  0.0   1.0  -1.0

[754 rows x 3 columns]
>>>> ssp.get_returns() # Initial values are 0 since signal is not available at the start for any of the stocks
date
2018-02-15    0.000000
2018-02-16    0.000000
2018-02-20    0.000000
2018-02-21    0.000000
2018-02-22    0.000000
  
2021-02-08    0.000018
2021-02-09    0.011935
2021-02-10    0.000661
2021-02-11    0.008798
2021-02-12    0.000269
Length: 754, dtype: float64

For a SimpleBlackLitterman, we can provide multiple stocks and multiple signals. Let us try to look at Ford, GM and Toyota based on the Price to Sales and Quick Ratio

>>>> from datetime import datetime
>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal, Price_to_Sales_Signal
>>>> from Portfolio import SimpleBlackLitterman
>>>> from SignalTransformers import Z_Score
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> toyota = Stock('TM')
>>>> signal_func1 = lambda stock_obj: Quick_Ratio_Signal(stock_obj) # Use the Raw quick Ratio
>>>> signal_func2 = lambda stock_obj: Z_Score(-1*Price_to_Sales_Signal(stock_obj), window=63) # Use the moving 63 Z score for Price to Sales. -1 to Flip the signal
>>>> signal_view_ret_arr = [0.02, 0.01] # Expected returns from each signal. Typically denoted as Q
>>>> sbl = SimpleBlackLitterman(stock_arr=[ford, gm, toyota], signal_func_arr=[signal_func1, signal_func2], signal_view_ret_arr=signal_view_ret_arr)
>>>> dt = datetime(2021, 2, 12).date()
>>>> sbl.weights_df # Weights based on MarketCap
                   F        GM        TM
date                                    
2020-02-07  0.059205  0.085642  0.855153
2020-02-10  0.059145  0.087673  0.853182
2020-02-11  0.059010  0.088974  0.852016
2020-02-12  0.059782  0.089820  0.850399
2020-02-13  0.060360  0.090068  0.849572
             ...       ...       ...
2021-02-08  0.075640  0.127209  0.797151
2021-02-09  0.077582  0.124607  0.797810
2021-02-10  0.073859  0.117810  0.808331
2021-02-11  0.073232  0.116954  0.809814
2021-02-12  0.072642  0.116230  0.811128

[257 rows x 3 columns]
>>>> sbl.var_covar_ts[dt] # Variance Covariance Martix computed based on rolling 126 days of returns, var_covar_ts is a dict of dataframes. Typically denoted as Sigma
           F        GM        TM
F   0.140825  0.085604  0.021408
GM  0.085604  0.197158  0.020909
TM  0.021408  0.020909  0.044832
>>>> sbl.implied_returns_df # Implied Returns for each day. This is often denoted as Pi
                   F        GM        TM
2020-02-10  0.012125  0.016345  0.014762
2020-02-11  0.012131  0.016199  0.014818
2020-02-12  0.011994  0.016279  0.014773
2020-02-13  0.012199  0.016374  0.014645
2020-02-14  0.011042  0.014466  0.013649
             ...       ...       ...
2021-02-08  0.038776  0.047958  0.037335
2021-02-09  0.039060  0.049541  0.037451
2021-02-10  0.038827  0.048351  0.037453
2021-02-11  0.036424  0.045034  0.040050
2021-02-12  0.037661  0.046260  0.040319

[256 rows x 3 columns]
>>>> sbl.link_mat_ts[dt] # The link matrix on a given day. link_mat_ts is a dict of dataframes. Typically denoted as Sigma
            F   GM   TM
signal_0  1.0 -1.0  0.0
signal_1 -1.0  0.0  1.0
>>>> sbl.view_var_covar_ts[dt] # The View variance covariance matrix on a given day. view_var_covar_ts is a dict of dataframes. Typically denoted as Omega
          signal_0  signal_1
signal_0  0.166775 -0.043777
signal_1 -0.043777  0.142840
>>>> sbl.black_litterman_weights_df # The Black litterman weights over time, based on the changing views
                   F        GM        TM
2020-05-07  0.077305  0.127350  0.795345
2020-05-08  0.077354  0.130177  0.792469
2020-05-11  0.077862  0.132684  0.789454
2020-05-12  0.065264  0.071459  0.863277
2020-05-13  0.114959  0.074012  0.811028
             ...       ...       ...
2021-02-08  0.116730  0.123745  0.759526
2021-02-09  0.116043  0.127209  0.756747
2021-02-10  0.149960  0.232889  0.617152
2021-02-11  0.109802 -0.032208  0.922406
2021-02-12  0.107529 -0.033443  0.925915
Owner
Salma Saidane
Salma Saidane
IDA Pro plugin that shows the comments in a database

ShowComments A Simple IDA Pro plugin that shows the comments in a database Installation Copy the file showcomments.py to the plugins folder under IDA

Fernando Mercês 32 Dec 10, 2022
A simple script written using symbolic python that takes as input a desired metric and automatically calculates and outputs the Christoffel Pseudo-Tensor, Riemann Curvature Tensor, Ricci Tensor, Scalar Curvature and the Kretschmann Scalar

A simple script written using symbolic python that takes as input a desired metric and automatically calculates and outputs the Christoffel Pseudo-Tensor, Riemann Curvature Tensor, Ricci Tensor, Scal

2 Nov 27, 2021
Fithub is a website application for athletes and fitness enthusiasts of all ages and experience levels.

Fithub is a website application for athletes and fitness enthusiasts of all ages and experience levels. Our website allows users to easily search, filter, and sort our comprehensive database of over

Andrew Wu 1 Dec 13, 2021
🙌Kart of 210+ projects based on machine learning, deep learning, computer vision, natural language processing and all. Show your support by ✨ this repository.

ML-ProjectKart 📌 Repository This kart showcases the finest collection of all projects based on machine learning, deep learning, computer vision, natu

Prathima Kadari 203 Dec 28, 2022
A totally unrealistic cell growth/reproduction simulation.

A totally unrealistic cell growth/reproduction simulation.

Andrien Wiandyano 1 Oct 24, 2021
Code for Crowd counting via unsupervised cross-domain feature adaptation.

CDFA-pytorch Code for Unsupervised crowd counting via cross-domain feature adaptation. Pre-trained models Google Drive Baidu Cloud : t4qc Environment

Guanchen Ding 6 Dec 11, 2022
Exactly what it sounds like, which is something rad

EyeWitnessTheFitness External recon got ya down? That scan prevention system preventing you from enumerating web pages? Well look no further, I have t

Ellis Springe 18 Dec 31, 2022
Convert ldapdomaindump to Bloodhound

ldd2bh Usage usage: ldd2bh.py [-h] [-i INPUT_FOLDER] [-o OUTPUT_FOLDER] [-a] [-u] [-c] [-g] [-d] Convert ldapdomaindump to Bloodhoun

64 Oct 30, 2022
BOHB tune library template (included example)

BOHB-template 실행 방법 python main.py 2021-10-10 기준 tf keras 버전 (tunecallback 방식) 완료 tf gradienttape 버전 (train_iteration 방식) 완료 pytorch 버전은 구현 준비중 방법 소개

Seungwoo Han 5 Mar 24, 2022
Find all solutions to SUBSET-SUM, including negative, positive, and repeating numbers

subsetsum The subsetsum Python module can enumerate all combinations within a list of integers which sums to a specific value. It works for both negat

Trevor Phillips 9 May 27, 2022
Create standalone, installable R Shiny apps using Electron

WARNING This is still very much a work in progress and nothing can be assumed stable in any way Temp notes: Two types of created installer, based on w

Chase Clark 5 Dec 24, 2021
Meower a social media platform written in Scratch 3.0 and Python

Meower Meower is a social media platform written in Scratch 3.0 and Python, ported to HTML for self-hosting. Try Beta 4.6 Changelog for 4.6 Start impl

Meower Media Co. 23 Dec 02, 2022
dbt (data build tool) adapter for Oracle Autonomous Database

dbt-oracle version 1.0.0 dbt (data build tool) adapter for the Oracle database. dbt "adapters" are responsible for adapting dbt's functionality to a g

Oracle 22 Nov 15, 2022
CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment

CBO’s CapTax Model CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment. Specifi

Congressional Budget Office 7 Dec 16, 2022
An OrpheusDL Tidal module

OrpheusDL - Tidal A Tidal module for the OrpheusDL modular archival music program Report Bug · Request Feature Table of content About OrpheusDL - Tida

Daniel 54 Dec 29, 2022
Identify unused production dependencies and avoid a bloated virtual environment.

creosote Identify unused production dependencies and avoid a bloated virtual environment. Quickstart # Install creosote in separate virtual environmen

Fredrik Averpil 7 Dec 29, 2022
Algorand Python API examples

Algorand-Py Algorand Python API examples This repo will hold example scripts to monitor activities on Algorand main net. You can: Monitor your assets

Karthik Dutt 2 Jan 23, 2022
This collection is to provide an easier way to interact with Juniper

Ansible Collection - cremsburg.apstra Overview The goal of this collection is to provide an easier way to interact with Juniper's Apstra solution. Whi

Calvin Remsburg 1 Jan 18, 2022
Set up a sidechain for the XRPL quickly and easily

Sidechain Launch Kit Introduction This directory contains python scripts to tests and explore side chains. This document walks through the steps to se

Xpring Engineering 15 Dec 08, 2022
A student information management system in Python

Student-information-management-system 本项目是一个学生信息管理系统,这个项目是用Python语言实现的,也实现了图形化界面的显示,同时也实现了管理员端,学生端两个登陆入口,同时底层使用的是Redis做的数据持久化。 This project is a stude

liuyunfei 7 Nov 15, 2022