Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios

Related tags

Miscellaneousikaros
Overview

Ikaros

Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build portfolios

How to use

Stock

The Stock object is a representation of all information what is available for a given security. For example for AAPL we scrape information from -

  1. https://finviz.com/quote.ashx?t=AAPL
  2. https://www.zacks.com/stock/research/AAPL/earnings-announcements

We also use the Yahoo Finance Library: yahooquery (GitHub link - https://github.com/dpguthrie/yahooquery ) to get fundamental data and price data.

>>>> from Stock import Stock
>>>> aapl = Stock('AAPL')
>>>> aapl.financial_data
             AccountsPayable  ...  WorkingCapital
ReleaseDate                   ...                
2020-01-28      4.511100e+10  ...    6.107000e+10
2020-04-30      3.242100e+10  ...    4.765900e+10
2020-07-30      3.532500e+10  ...    4.474700e+10
2020-10-29      4.229600e+10  ...    3.832100e+10
2021-01-27      6.384600e+10  ...    2.159900e+10

[5 rows x 129 columns]

>>>> aapl['PriceClose']
date
2018-02-15     41.725037
2018-02-16     41.589962
2018-02-20     41.450069
2018-02-21     41.261936
2018-02-22     41.606850
   
2021-02-08    136.910004
2021-02-09    136.009995
2021-02-10    135.389999
2021-02-11    135.130005
2021-02-12    135.369995
Name: PriceClose, Length: 754, dtype: float6

Mix and match market data with fundamental data directly. Ikaros uses the earnings calendar from Zacks to get an accurate Point in time, timeseries from fundamental data.

>>>> aapl['PriceClose'] / aapl['TotalRevenue']
date
2018-02-15             NaN
2018-02-16             NaN
2018-02-20             NaN
2018-02-21             NaN
2018-02-22             NaN
    
2021-02-08    1.228565e-09
2021-02-09    1.220488e-09
2021-02-10    1.214925e-09
2021-02-11    1.212592e-09
2021-02-12    1.214745e-09
Length: 754, dtype: float64

Ikaros also caches the data webscraped into readable csv files. If you want to save the data in a custom location, ensure that the enviornment variable IKAROSDATA is set on your operating system.

Signal

The Signal Library is repository of functions that provide useful insights into stocks. We have a limited number of signals so far but stay tuned! for more

>>>> from Signals import Quick_Ratio_Signal
>>>> ford = Stock('F')
>>>> Quick_Ratio_Signal(ford)
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    1.089966
2021-02-09    1.089966
2021-02-10    1.089966
2021-02-11    1.089966
2021-02-12    1.089966
Length: 754, dtype: float64

>>>> from SignalTransformers import Z_Score
>>>> Z_Score(Quick_Ratio_Signal(ford), window = 21) # Computes the rolling 21 day Z-score
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    4.248529
2021-02-09    2.924038
2021-02-10    2.320201
2021-02-11    1.949359
2021-02-12    1.688194
Length: 754, dtype: float64

Portfolio

Finally, use the signals and stock objects to construct Portfolios yourself. Currently we have

  1. Pair Trading Portfolio for 2 Stocks and a Signal
  2. Single Signal Portfolio for multiple Sotcks given a Signal
  3. A basic implementation of the Black Litterman Model

For a PairTradingPortfolio, lets look at GM and Ford and compare the two based on the Quick Ratio

>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal
>>>> from Portfolio import PairTradingPortfolio
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> ptp = PairTradingPortfolio(stock_obj1=ford, stock_obj2=gm, signal_func=Quick_Ratio_Signal)
>>>> ptp.relative_differencing() # The weights are set based on the rolling z-score of the difference of the signals for the 2 stocks
>>>> ptp.get_returns()
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08   -0.033217
2021-02-09    0.037791
2021-02-10    0.005568
2021-02-11   -0.001001
2021-02-12   -0.001700
Length: 754, dtype: float64
>>>> ptp.stock_obj1_wght_ts # Get the weight of Stock 1 ( Weight of stock 2 is just -1 times weight of stock 1)
Out[9]: 
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    0.814045
2021-02-09    0.818967
2021-02-10    0.823901
2021-02-11    0.909396
2021-02-12    0.910393
Length: 754, dtype: float64

For a SingleSignalPortfolio, lets look at FaceBook, Microsfot and Apple and compare them based on the Price to Sales Ratio.

>>>> from Stock import Stock
>>>> from Signals import Price_to_Sales_Signal
>>>> from Portfolio import SingleSignalPortfolio
>>>> from SignalTransformers import Z_Score
>>>> fb = Stock('FB')
>>>> msft = Stock('MSFT')
>>>> aapl = Stock('AAPL')
>>>> signal_func = lambda stock_obj : Z_Score(Price_to_Sales_Signal(stock_obj), window=42) # Use a rolling Z score over 42 days rather than the raw ratio
>>>> ssp.relative_ranking() # Rank the stock from -1 to +1, in this case we have 3 stocks it will be {-1, 0, 1}, if we have 4 sotck it would be {-1, -0.33, 0.33, 1}
>>>> ssp.weight_df
             FB  MSFT  AAPL
date                       
2018-02-15  0.0   0.0   0.0
2018-02-16  0.0   0.0   0.0
2018-02-20  0.0   0.0   0.0
2018-02-21  0.0   0.0   0.0
2018-02-22  0.0   0.0   0.0
        ...   ...   ...
2021-02-08  0.0   1.0  -1.0
2021-02-09  0.0   1.0  -1.0
2021-02-10  0.0   1.0  -1.0
2021-02-11  0.0   1.0  -1.0
2021-02-12  0.0   1.0  -1.0

[754 rows x 3 columns]
>>>> ssp.get_returns() # Initial values are 0 since signal is not available at the start for any of the stocks
date
2018-02-15    0.000000
2018-02-16    0.000000
2018-02-20    0.000000
2018-02-21    0.000000
2018-02-22    0.000000
  
2021-02-08    0.000018
2021-02-09    0.011935
2021-02-10    0.000661
2021-02-11    0.008798
2021-02-12    0.000269
Length: 754, dtype: float64

For a SimpleBlackLitterman, we can provide multiple stocks and multiple signals. Let us try to look at Ford, GM and Toyota based on the Price to Sales and Quick Ratio

>>>> from datetime import datetime
>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal, Price_to_Sales_Signal
>>>> from Portfolio import SimpleBlackLitterman
>>>> from SignalTransformers import Z_Score
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> toyota = Stock('TM')
>>>> signal_func1 = lambda stock_obj: Quick_Ratio_Signal(stock_obj) # Use the Raw quick Ratio
>>>> signal_func2 = lambda stock_obj: Z_Score(-1*Price_to_Sales_Signal(stock_obj), window=63) # Use the moving 63 Z score for Price to Sales. -1 to Flip the signal
>>>> signal_view_ret_arr = [0.02, 0.01] # Expected returns from each signal. Typically denoted as Q
>>>> sbl = SimpleBlackLitterman(stock_arr=[ford, gm, toyota], signal_func_arr=[signal_func1, signal_func2], signal_view_ret_arr=signal_view_ret_arr)
>>>> dt = datetime(2021, 2, 12).date()
>>>> sbl.weights_df # Weights based on MarketCap
                   F        GM        TM
date                                    
2020-02-07  0.059205  0.085642  0.855153
2020-02-10  0.059145  0.087673  0.853182
2020-02-11  0.059010  0.088974  0.852016
2020-02-12  0.059782  0.089820  0.850399
2020-02-13  0.060360  0.090068  0.849572
             ...       ...       ...
2021-02-08  0.075640  0.127209  0.797151
2021-02-09  0.077582  0.124607  0.797810
2021-02-10  0.073859  0.117810  0.808331
2021-02-11  0.073232  0.116954  0.809814
2021-02-12  0.072642  0.116230  0.811128

[257 rows x 3 columns]
>>>> sbl.var_covar_ts[dt] # Variance Covariance Martix computed based on rolling 126 days of returns, var_covar_ts is a dict of dataframes. Typically denoted as Sigma
           F        GM        TM
F   0.140825  0.085604  0.021408
GM  0.085604  0.197158  0.020909
TM  0.021408  0.020909  0.044832
>>>> sbl.implied_returns_df # Implied Returns for each day. This is often denoted as Pi
                   F        GM        TM
2020-02-10  0.012125  0.016345  0.014762
2020-02-11  0.012131  0.016199  0.014818
2020-02-12  0.011994  0.016279  0.014773
2020-02-13  0.012199  0.016374  0.014645
2020-02-14  0.011042  0.014466  0.013649
             ...       ...       ...
2021-02-08  0.038776  0.047958  0.037335
2021-02-09  0.039060  0.049541  0.037451
2021-02-10  0.038827  0.048351  0.037453
2021-02-11  0.036424  0.045034  0.040050
2021-02-12  0.037661  0.046260  0.040319

[256 rows x 3 columns]
>>>> sbl.link_mat_ts[dt] # The link matrix on a given day. link_mat_ts is a dict of dataframes. Typically denoted as Sigma
            F   GM   TM
signal_0  1.0 -1.0  0.0
signal_1 -1.0  0.0  1.0
>>>> sbl.view_var_covar_ts[dt] # The View variance covariance matrix on a given day. view_var_covar_ts is a dict of dataframes. Typically denoted as Omega
          signal_0  signal_1
signal_0  0.166775 -0.043777
signal_1 -0.043777  0.142840
>>>> sbl.black_litterman_weights_df # The Black litterman weights over time, based on the changing views
                   F        GM        TM
2020-05-07  0.077305  0.127350  0.795345
2020-05-08  0.077354  0.130177  0.792469
2020-05-11  0.077862  0.132684  0.789454
2020-05-12  0.065264  0.071459  0.863277
2020-05-13  0.114959  0.074012  0.811028
             ...       ...       ...
2021-02-08  0.116730  0.123745  0.759526
2021-02-09  0.116043  0.127209  0.756747
2021-02-10  0.149960  0.232889  0.617152
2021-02-11  0.109802 -0.032208  0.922406
2021-02-12  0.107529 -0.033443  0.925915
Owner
Salma Saidane
Salma Saidane
A collection of examples of using cocotb for functional verification of VHDL designs with GHDL.

At the moment, this repo is in an early state and serves as a learning tool for me. So it contains a a lot of quirks and code which can be done much better by cocotb-professionals.

T. Meissner 7 Mar 10, 2022
Created a Python Keylogger script.

Python Script Simple Keylogger Script WHAT IS IT? Created a Python Keylogger script. HOW IT WORKS Once the script has been executed, it will automatic

AC 0 Dec 12, 2021
A Curated Collection of Awesome Python Scripts

A Curated Collection of Awesome Python Scripts that will make you go wow. This repository will help you in getting those green squares. Hop in and enjoy the journey of open source. 🚀

Prathima Kadari 248 Dec 31, 2022
A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites.

web check A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites. What it does The script wi

Jaime Álvarez 52 Mar 15, 2022
Repository to store sample python programs for python learning

py Repository to store sample Python programs. This repository is meant for beginners to assist them in their learning of Python. The repository cover

codebasics 5.8k Dec 30, 2022
A beacon generator using Cobalt Strike and a variety of tools.

Beaconator is an aggressor script for Cobalt Strike used to generate either staged or stageless shellcode and packing the generated shellcode using your tool of choice.

Capt. Meelo 441 Dec 17, 2022
This is sample project needed for security course to connect web service to database

secufaku This is sample project needed for security course to "connect web service to database". Why it suits alignment purpose It connects to postgre

Mark Nicholson 6 May 15, 2022
With Christmas and New Year ahead, it is time for some festive coding. Here is a Christmas Card for you all!

Christmas Card With Christmas and New Year ahead, it is time for some festive coding! Here is a Christmas Card for you all! NOTE: I have not made this

CodeMaster7000 1 Dec 25, 2021
A simple IDA Pro plugin to show all HexRays decompiler comments written by user

XRaysComments A simple IDA Pro plugin to show all HexRays decompiler comments written by user Installation Copy the file xray_comments.py to the plugi

Nox 20 Dec 27, 2022
Auto check in via GitHub Actions

因为本人毕业离校,本项目交由在校的@hfut-xyc同学接手,请访问hfut-xyc/hfut_auto_check-in获得最新的脚本 本项目遵从GPLv2协定,Copyright (C) 2021, Fw[a]rd 免责声明 根据GPL协定,我、本项目的作者,不会对您使用这个脚本带来的任何后果

Fw[a]rd 3 Jun 27, 2021
Python library for parsing Godot scene files

Godot Parser This is a python library for parsing Godot scene (.tscn) and resource (.tres) files. It's intended to make it easier to automate certain

Steven Arcangeli 30 Jan 04, 2023
A Linux webcam plugin for BGMv2 as used in our demos.

The goal of this repository is to supplement the main Real-Time High Resolution Background Matting repo with a working demo of a videoconferencing plu

Andrey Ryabtsev 144 Dec 27, 2022
Tie together `drf-spectacular` and `djangorestframework-dataclasses` for easy-to-use apis and openapi schemas.

Speccify Tie together drf-spectacular and djangorestframework-dataclasses for easy-to-use apis and openapi schemas. Usage @dataclass class MyQ

Lyst 4 Sep 26, 2022
PyToQlik is a library that allows you to integrate Qlik Desktop with Jupyter notebooks

PyToQlik is a library that allows you to integrate Qlik Desktop with Jupyter notebooks. With it you can: Open and edit a Qlik app inside a Ju

BIX Tecnologia 16 Sep 09, 2022
This module extends twarc to allow you to print out tweets as text for easy testing on the command line

twarc-text This module extends twarc to allow you to print out tweets as text for easy testing on the command line. Maybe it's useful for spot checkin

Documenting the Now 2 Oct 12, 2021
36 key ergo split keyboard, designed around the Seeeduino Xiao platform

Slice36 Minimalist Split Keyboard 36 key ergo split keyboard, designed around the Seeeduino Xiao platform. Inspired by the Corne, Ferris, Ben Vallack'

54 Dec 21, 2022
Generalise Prometheus metrics. takes out server specific, replaces variables and such.

Generalise Prometheus metrics. takes out server specific, replaces variables and such. makes it easier to copy from Prometheus console straight to Grafana.

ziv 5 Mar 28, 2022
Provides guideline on how to configure pre-commit hooks in your own python project

Pre-commit Configuration Guide The main aim of this repository is to act as a guide on how to configure the pre-commit hooks in your existing python p

Faraz Ahmed Khan 2 Mar 31, 2022
An extended version of the hotkeys demo code using action classes

An extended version of the hotkeys application using action classes. In adafruit's Hotkeys code, a macro is using a series of integers, assumed to be

Neradoc 5 May 01, 2022
:snake: Complete C99 parser in pure Python

pycparser v2.20 Contents 1 Introduction 1.1 What is pycparser? 1.2 What is it good for? 1.3 Which version of C does pycparser support? 1.4 What gramma

Eli Bendersky 2.8k Dec 29, 2022