Neptune client library - integrate your Python scripts with Neptune

Overview


PyPI version Build Status neptune-blog twitter youtube

Lightweight experiment tracking tool for AI/ML individuals and teams. Fits any workflow.

Neptune is a lightweight experiment logging/tracking tool that helps you with your machine learning experiments. Neptune is suitable for indvidual, commercial and research projects.

Get free account



Features to help you get the job done

  • Rich experiment logging and tracking capabilities
  • Python and R clients
  • Experiments dashboards, views and comparison features
  • Team management
  • 25+ integrations with popular data science stack libraries
  • Fast, reliable UI

Documentation

Neptune in 30 seconds

Installation

pip install neptune-client

or

conda install -c conda-forge neptune-client

Start tracking

For the hands-on intro to neptune-client check this API Tour, below simple example is presented:

github-code jupyter-code Open In Colab

import neptune

neptune.init('my_workspace/my_project')
neptune.create_experiment()

for epoch in range(train_epochs):
    ...
    neptune.log_metric('loss', loss)
    neptune.log_metric('metric', accuracy)

score = ...

neptune.log_metric('val_score', score)
neptune.log_artifact('model_weights.pth')

What is Neptune good for?

Neptune can especially helpful with the following problems:

Use Neptune with your favourite AI/ML libraries

frameworks-logos

Neptune comes with 25+ integrations with Python libraries popular in machine learning, deep learning and reinforcement learning.

Integrations lets you automatically:

  • log training, validation and testing metrics, and visualize them in Neptune UI,
  • log experiment hyper-parameters,
  • monitor hardware usage,
  • log performance charts and images,
  • save model checkpoints,
  • log interactive visualizations,
  • log csv files, pandas Datraframes,
  • log much more.

All integrations

PyTorch Lightning



PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research. You can automatically log PyTorch Lightning experiments to Neptune using NeptuneLogger (part of the pytorch-lightning library).

Example:

from pytorch_lightning.loggers.neptune import NeptuneLogger

# Create NeptuneLogger
neptune_logger = NeptuneLogger(
    api_key="ANONYMOUS",
    project_name="shared/pytorch-lightning-integration",
    params=PARAMS)

# Pass NeptuneLogger to the Trainer
trainer = pl.Trainer(max_epochs=PARAMS['max_epochs'],
                     logger=neptune_logger)

# Fit model, have everything logged automatically
model = LitModel()
trainer.fit(model, train_loader)

neptune-pl

Check full code example:

github-code jupyter-code Open In Colab

TensorFow/Keras



TensorFlow is an open source deep learning framework commonly used for building neural network models. Keras is an official higher level API on top of TensorFlow. Neptune helps with keeping track of model training metadata.

Neptune integrates with both TensorFlow / Keras directly and via TensorBoard.

Example:

import neptune
import tensorflow as tf
from neptunecontrib.monitoring.keras import NeptuneMonitor

neptune.init(api_token='ANONYMOUS', project_qualified_name='my_workspace/my_project')
neptune.create_experiment('tensorflow-keras-quickstart')

x_train, x_test = ...
model = tf.keras.models.Sequential([
  ...
])
optimizer = tf.keras.optimizers.SGD(lr=0.005, momentum=0.4,)
model.compile(optimizer=optimizer,
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          epochs=5,
          batch_size=64,
          callbacks=[NeptuneMonitor()])

neptune-pl

Check full code example:

github-code jupyter-code Open In Colab

Use with Scikit-learn



Scikit-learn is an open source machine learning framework commonly used for building predictive models. Neptune helps with keeping track of model training metadata.

Example:

import neptune
from neptunecontrib.monitoring.sklearn import log_regressor_summary

neptune.init('my_workspace/my_project')
neptune.create_experiment(params=parameters,
                          name='regression-example',
                          tags=['RandomForestRegressor', 'regression'])

rfr = RandomForestRegressor(**parameters)
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=28743)
rfr.fit(X_train, y_train)

log_regressor_summary(rfr, X_train, X_test, y_train, y_test)

neptune-pl

Check full code example:

github-code jupyter-code Open In Colab

Use with LightGBM



LightGBM is a popular gradient boosting library.

Example:

import lightgbm as lgb
import neptune
from neptunecontrib.monitoring.lightgbm import neptune_monitor

neptune.init('my_project/my_workspace')
neptune.create_experiment()

X_train, X_test, y_train, y_test = ...
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)

params = {'boosting_type': 'gbdt',
          'objective': 'multiclass',
          'num_class': 3,
          'num_leaves': 31,
          'learning_rate': 0.05,
          'feature_fraction': 0.9
          }

gbm = lgb.train(params,
    lgb_train,
    num_boost_round=500,
    valid_sets=[lgb_train, lgb_eval],
    valid_names=['train','valid'],
    callbacks=[neptune_monitor()],
    )

neptune-pl

Check full code example:

github-code jupyter-code Open In Colab

Use with Optuna



Optuna is an open source hyperparameter optimization framework to automate hyperparameter search.

Example:

import neptune
import lightgbm as lgb
import optuna
import neptunecontrib.monitoring.optuna as opt_utils

def objective(trial):
    data, target = load_breast_cancer(return_X_y=True)
    train_x, test_x, train_y, test_y = train_test_split(data, target, test_size=0.25)
    dtrain = lgb.Dataset(train_x, label=train_y)

    param = {'verbose': -1,
             'objective': 'binary',
             'metric': 'binary_logloss',
             'num_leaves': trial.suggest_int('num_leaves', 2, 256),
             'feature_fraction': trial.suggest_uniform('feature_fraction', 0.2, 1.0),
             'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.2, 1.0),
             'min_child_samples': trial.suggest_int('min_child_samples', 3, 100)}

    gbm = lgb.train(param, dtrain)
    preds = gbm.predict(test_x)
    accuracy = roc_auc_score(test_y, preds)

    return accuracy

neptune.init('my_workspace/my_project')
neptune.create_experiment('optuna-sweep')

neptune_callback = opt_utils.NeptuneCallback()

study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100, callbacks=[neptune_callback])

neptune-pl

Check full code example:

github-code jupyter-code Open In Colab

Getting help

If you got stuck or simply want to talk to us about something here are your options:

Neptune.ai is trusted by great companies

People behind Neptune

Created with ❤️ by the Neptune.ai team:

Piotr, Michał, Jakub, Paulina, Kamil, Małgorzata, Piotr, Aleksandra, Marcin, Hubert, Adam, Szymon, Jakub, Maciej, Piotr, Paweł, Patrycja, Grzegorz, Paweł, Natalia, Marcin and you?

neptune.ai

Comments
  • BUG: Can't log to organisation workspace using neptune-client v0.15.2+ (on-prem)

    BUG: Can't log to organisation workspace using neptune-client v0.15.2+ (on-prem)

    Hi Team,

    We are using Neptune AI - SaaS version in our organization.

    While trying to use Neptune-Client 0.15.2 version as below, it gives error while trying to create run. import neptune.new as neptune import os

    os.environ['NEPTUNE_ALLOW_SELF_SIGNED_CERTIFICATE']='TRUE'

    run = neptune.init(project="", api_token="") Given values in both project & api_token


    KeyError Traceback (most recent call last) /opt/conda/lib/python3.7/site-packages/bravado_core/model.py in getattr(self, attr_name) 416 try: --> 417 return self[attr_name] 418 except KeyError:

    /opt/conda/lib/python3.7/site-packages/bravado_core/model.py in getitem(self, property_name) 446 """ --> 447 return self.__dict[property_name] 448

    KeyError: 'type'

    During handling of the above exception, another exception occurred:

    AttributeError Traceback (most recent call last) /tmp/ipykernel_4816/3016530260.py in ----> 1 run = neptune.init(project="cardinal-health/test", api_token="...==")

    /opt/conda/lib/python3.7/site-packages/neptune/new/internal/init/run.py in init_run(project, api_token, run, custom_run_id, mode, name, description, tags, source_files, capture_stdout, capture_stderr, capture_hardware_metrics, fail_on_exception, monitoring_namespace, flush_period, proxies, capture_traceback, **kwargs) 264 custom_run_id=custom_run_id, 265 notebook_id=notebook_id, --> 266 checkpoint_id=checkpoint_id, 267 ) 268

    /opt/conda/lib/python3.7/site-packages/neptune/new/internal/backends/utils.py in wrapper(*args, **kwargs) 100 101 try: --> 102 return func(*args, **kwargs) 103 except requests.exceptions.InvalidHeader as e: 104 if "X-Neptune-Api-Token" in e.args[0]:

    /opt/conda/lib/python3.7/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py in create_run(self, project_id, git_ref, custom_run_id, notebook_id, checkpoint_id) 359 parent_id=project_id, 360 container_type=ContainerType.RUN, --> 361 additional_params=additional_params, 362 ) 363

    /opt/conda/lib/python3.7/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py in _create_experiment(self, project_id, parent_id, container_type, additional_params) 411 self.leaderboard_client.api.createExperiment(**kwargs).response().result 412 ) --> 413 return ApiExperiment.from_experiment(experiment) 414 except HTTPNotFound: 415 raise ProjectNotFound(project_id=project_id)

    /opt/conda/lib/python3.7/site-packages/neptune/new/internal/backends/api_model.py in from_experiment(cls, response_exp) 52 return cls( 53 id=response_exp.id, ---> 54 type=ContainerType.from_api(response_exp.type), 55 sys_id=response_exp.shortId, 56 workspace=response_exp.organizationName,

    /opt/conda/lib/python3.7/site-packages/bravado_core/model.py in getattr(self, attr_name) 419 raise AttributeError( 420 'type object {0!r} has no attribute {1!r}'.format( --> 421 type(self).name, attr_name, 422 ), 423 )

    AttributeError: type object 'Experiment' has no attribute 'type'

    bug 
    opened by cah-parita-desai 27
  • BUG: TypeError: stat: path should be string, bytes, os.PathLike or integer, not _io.BytesIO

    BUG: TypeError: stat: path should be string, bytes, os.PathLike or integer, not _io.BytesIO

    Describe the bug

    When the run starts (catboost + optuna), after the first round of optimization, the below error is shown. No further sync happens after this error.

    This error also occurs when I try to sync the run afterwards (neptune sync --object ...).

    Unexpected error occurred in Neptune background thread: Killing Neptune asynchronous thread. All data is safe on disk and can be later synced manually using `neptune sync` command.
    Exception in thread NeptuneAsyncOpProcessor:
    Traceback (most recent call last):
      File "/home/username/miniconda3/lib/python3.8/threading.py", line 932, in _bootstrap_inner
        self.run()
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 53, in run
        self.work()
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 214, in work
        self.process_batch(batch, version)
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 77, in wrapper
        result = func(self_, *args, **kwargs)
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 227, in process_batch
        processed_count, errors = self._processor._backend.execute_operations(
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 481, in execute_operations
        self._execute_upload_operations_with_400_retry(
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 580, in _execute_upload_operations_with_400_retry
        return self._execute_upload_operations(
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 546, in _execute_upload_operations
        upload_errors = upload_file_attribute(
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 108, in upload_file_attribute
        _multichunk_upload_with_retry(
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 319, in _multichunk_upload_with_retry
        return _multichunk_upload(
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 369, in _multichunk_upload
        for idx, chunk in enumerate(chunker.generate()):
      File "/home/username/miniconda3/lib/python3.8/site-packages/neptune/internal/storage/datastream.py", line 66, in generate
        last_change = os.stat(self._filename).st_mtime
    TypeError: stat: path should be string, bytes, os.PathLike or integer, not _io.BytesIO
    

    Reproduction

    It happens for all my recent runs.

    Expected behavior

    • No error
    • syncing to the app.neptune.ai

    Environment

    The output of pip list:

    Package                           Version
    --------------------------------- -----------
    aiohttp                           3.8.1
    aiohttp-cors                      0.7.0
    aioredis                          1.3.1
    aiosignal                         1.2.0
    alembic                           1.7.7
    altair                            4.2.0
    altgraph                          0.17.2
    argon2-cffi                       21.3.0
    argon2-cffi-bindings              21.2.0
    astor                             0.8.1
    asttokens                         2.0.5
    async-generator                   1.10
    async-timeout                     4.0.2
    attrs                             21.4.0
    autoflake                         1.4
    autopage                          0.5.0
    autopep8                          1.6.0
    backcall                          0.2.0
    backports.functools-lru-cache     1.6.4
    backports.lzma                    0.0.14
    beautifulsoup4                    4.11.1
    biopython                         1.79
    bleach                            5.0.0
    blessings                         1.7
    blinker                           1.4
    bokeh                             2.4.2
    boto3                             1.21.43
    botocore                          1.24.43
    bravado                           11.0.3
    bravado-core                      5.17.0
    brotlipy                          0.7.0
    cachetools                        5.0.0
    catboost                          1.0.5
    category-encoders                 2.4.0
    certifi                           2021.10.8
    cffi                              1.15.0
    chardet                           4.0.0
    charset-normalizer                2.0.12
    ciso8601                          2.2.0
    click                             8.1.2
    cliff                             3.10.1
    cloudpickle                       2.0.0
    cmaes                             0.8.2
    cmd2                              2.4.0
    colorama                          0.4.4
    colorful                          0.5.4
    colorlog                          6.6.0
    colour                            0.1.5
    comet-ml                          3.28.2
    conda                             4.12.0
    conda-pack                        0.7.0
    conda-package-handling            1.8.1
    configobj                         5.0.6
    contextlib2                       21.6.0
    cryptography                      36.0.2
    csb                               1.2.5
    cycler                            0.11.0
    cytoolz                           0.11.2
    dask                              2022.4.1
    dataclasses                       0.8
    debugpy                           1.6.0
    decorator                         5.1.1
    defusedxml                        0.7.1
    Deprecated                        1.2.13
    distributed                       2022.4.1
    dtreeviz                          1.3.5
    dulwich                           0.20.35
    emcee                             3.1.1
    entrypoints                       0.4
    everett                           3.0.0
    executing                         0.8.3
    fastjsonschema                    2.15.3
    filelock                          3.6.0
    fitparse                          1.2.0
    Flask                             2.0.3
    flit_core                         3.7.1
    fonttools                         4.32.0
    frozenlist                        1.3.0
    fsspec                            2022.3.0
    future                            0.18.2
    garmin-ical-export                1.0.4
    gitdb                             4.0.9
    GitPython                         3.1.27
    google-api-core                   2.5.0
    google-auth                       2.6.5
    googleapis-common-protos          1.56.0
    gplearn                           0.4.1
    gpustat                           0.6.0
    graphviz                          0.20
    greenlet                          1.1.2
    GridDataFormats                   0.7.0
    grpcio                            1.45.0
    h5py                              3.6.0
    HeapDict                          1.0.1
    hiredis                           2.0.0
    hyperopt                          0.2.7
    idna                              3.3
    imbalanced-learn                  0.9.0
    importlib-metadata                4.11.3
    importlib-resources               5.7.1
    iniconfig                         1.1.1
    ipykernel                         6.13.0
    ipython                           8.2.0
    ipython-genutils                  0.2.0
    ipywidgets                        7.7.0
    iso3166                           2.0.2
    itsdangerous                      2.1.0
    jedi                              0.18.1
    Jinja2                            3.1.1
    jmespath                          1.0.0
    joblib                            1.1.0
    json-tricks                       3.15.5
    jsonref                           0.2
    jsonschema                        4.4.0
    jupyter                           1.0.0
    jupyter-client                    7.2.2
    jupyter-console                   6.4.3
    jupyter-contrib-core              0.3.3
    jupyter-contrib-nbextensions      0.5.1
    jupyter-core                      4.9.2
    jupyter-highlight-selected-word   0.2.0
    jupyter-latex-envs                1.4.6
    jupyter-nbextensions-configurator 0.4.1
    jupyterlab-pygments               0.2.2
    kaleido                           0.2.1
    keras                             2.8.0
    kiwisolver                        1.4.2
    libmambapy                        0.22.1
    lightgbm                          3.3.2
    llvmlite                          0.36.0
    locket                            0.2.0
    lux-api                           0.5.1
    lux-widget                        0.1.11
    lxml                              4.8.0
    lz4                               4.0.0
    macholib                          1.15.2
    Mako                              1.2.0
    mamba                             0.22.1
    Markdown                          3.3.6
    MarkupSafe                        2.1.1
    matplotlib                        3.5.1
    matplotlib-inline                 0.1.3
    mistune                           0.8.4
    mljar-supervised                  0.11.2
    modin                             0.13.2
    MolVS                             0.1.1
    monotonic                         1.5
    mpi4py                            3.1.3
    mrcfile                           1.3.0
    msgpack                           1.0.3
    multidict                         6.0.2
    munkres                           1.1.4
    mypy-extensions                   0.4.3
    nb-conda                          2.2.1
    nb-conda-kernels                  2.3.1
    nbclient                          0.6.0
    nbconvert                         6.5.0
    nbformat                          5.3.0
    neptune-client                    0.16.1
    neptune-optuna                    0.9.13
    nest-asyncio                      1.5.5
    networkx                          2.7
    nni                               2.6.1
    notebook                          6.4.11
    numba                             0.53.1
    numpy                             1.22.3
    nvidia-ml-py3                     7.352.0
    oauthlib                          3.2.0
    olefile                           0.46
    opencensus                        0.8.0
    opencensus-context                0.1.2
    optuna                            2.10.0
    packaging                         21.3
    paho-mqtt                         1.6.1
    pandas                            1.4.0
    pandocfilters                     1.5.0
    parso                             0.8.3
    partd                             1.2.0
    pathlib2                          2.3.7.post1
    patsy                             0.5.2
    pbr                               5.8.1
    pexpect                           4.8.0
    pickleshare                       0.7.5
    Pillow                            9.1.0
    pip                               22.0.4
    plotly                            5.7.0
    pluggy                            1.0.0
    Pmw                               2.0.1
    prettytable                       3.2.0
    prometheus-client                 0.14.1
    prompt-toolkit                    3.0.29
    protobuf                          3.19.4
    psutil                            5.9.0
    ptyprocess                        0.7.0
    pure-eval                         0.2.2
    py                                1.11.0
    py4j                              0.10.9.3
    pyaml                             21.10.1
    pyarrow                           6.0.1
    pyasn1                            0.4.8
    pyasn1-modules                    0.2.7
    pycairo                           1.21.0
    pycodestyle                       2.8.0
    pycosat                           0.6.3
    pycparser                         2.21
    pycryptodome                      3.14.1
    pyflakes                          2.4.0
    Pygments                          2.11.2
    pyinstaller                       4.9
    pyinstaller-hooks-contrib         2022.2
    PyJWT                             2.3.0
    pymongo                           4.0.1
    pyOpenSSL                         22.0.0
    pyparsing                         3.0.8
    pyperclip                         1.8.2
    PyPrind                           2.11.3
    Pypubsub                          4.0.3
    PyQt5                             5.15.6
    PyQt5-Qt5                         5.15.2
    PyQt5-sip                         12.9.1
    PyQtChart                         5.15.5
    PyQtChart-Qt5                     5.15.2
    PyQtWebEngine                     5.15.5
    PyQtWebEngine-Qt5                 5.15.2
    pyrsistent                        0.18.1
    pyserial                          3.5
    PySocks                           1.7.1
    pytest                            7.1.1
    python-dateutil                   2.8.2
    PythonWebHDFS                     0.2.3
    pytz                              2022.1
    pyu2f                             0.1.5
    PyYAML                            6.0
    pyzmq                             22.3.0
    qed                               1.0.1
    qtconsole                         5.3.0
    QtPy                              2.0.1
    ray                               1.10.0
    redis                             4.2.2
    reportlab                         3.6.7
    requests                          2.27.1
    requests-oauthlib                 1.3.1
    requests-toolbelt                 0.9.1
    responses                         0.18.0
    rsa                               4.8
    ruamel-yaml-conda                 0.15.80
    s3transfer                        0.5.2
    schema                            0.7.5
    schwimmbad                        0.3.2
    scikit-learn                      1.0.2
    scikit-optimize                   0.9.0
    scikit-plot                       0.3.7
    scipy                             1.8.0
    seaborn                           0.11.2
    semantic-version                  2.9.0
    Send2Trash                        1.8.0
    service-identity                  21.1.0
    setproctitle                      1.2.2
    setuptools                        62.1.0
    sh                                1.13.1
    shap                              0.40.0
    simplejson                        3.17.6
    six                               1.16.0
    slicer                            0.0.7
    smart-open                        5.2.1
    smilite                           2.3.0
    smmap                             3.0.5
    smogn                             0.1.2
    sortedcontainers                  2.4.0
    soupsieve                         2.3.1
    SQLAlchemy                        1.4.35
    stack-data                        0.2.0
    statsmodels                       0.13.2
    stevedore                         3.5.0
    swagger-spec-validator            2.7.4
    tabulate                          0.8.9
    tblib                             1.7.0
    tenacity                          8.0.1
    terminado                         0.13.3
    testpath                          0.6.0
    threadpoolctl                     3.1.0
    tinycss2                          1.1.1
    toml                              0.10.2
    tomli                             2.0.1
    toolz                             0.11.2
    torch                             1.10.2
    torchvision                       0.11.3
    tornado                           6.1
    tqdm                              4.64.0
    traitlets                         5.1.1
    typeguard                         2.13.3
    typing_extensions                 4.2.0
    unicodedata2                      14.0.0
    UpSetPlot                         0.6.0
    urllib3                           1.26.9
    vobject                           0.9.6.1
    wcwidth                           0.2.5
    webencodings                      0.5.1
    websocket-client                  1.3.2
    websockets                        10.2
    Werkzeug                          2.1.1
    wheel                             0.37.1
    widgetsnbextension                3.6.0
    wordcloud                         1.8.1
    wrapt                             1.14.0
    wurlitzer                         3.0.2
    wxPython                          4.1.1
    xgboost                           1.5.2
    yapf                              0.32.0
    yarl                              1.7.2
    zict                              2.1.0
    zipp                              3.8.0
    

    The operating system you're using: Ubuntu 20.04.4 LTS The output of python --version: Python 3.8.13

    Further info

    This error doesn't occur with the same script and data, the same neptune-client and neptune-optuna versions but run on another system (ICM topola, Linux hpc 3.10.0-1160.59.1.el7.x86_64 #1 SMP Wed Feb 23 16:47:03 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux and Python 3.9.12).

    pip list (here everything works fine):

    Package                       Version
    ----------------------------- ---------
    aiohttp                       3.8.1
    aiohttp-cors                  0.7.0
    aioredis                      1.3.1
    aiosignal                     1.2.0
    alembic                       1.7.7
    async-timeout                 4.0.2
    attrs                         21.4.0
    autopage                      0.5.0
    backports.functools-lru-cache 1.6.4
    blessings                     1.7
    blinker                       1.4
    bokeh                         2.4.2
    boto3                         1.21.44
    botocore                      1.24.44
    bravado                       11.0.3
    bravado-core                  5.17.0
    brotlipy                      0.7.0
    cachetools                    5.0.0
    catboost                      1.0.5
    category-encoders             2.4.0
    certifi                       2021.10.8
    cffi                          1.15.0
    charset-normalizer            2.0.12
    click                         8.1.2
    cliff                         3.10.1
    cloudpickle                   2.0.0
    cmaes                         0.8.2
    cmd2                          2.4.0
    colorama                      0.4.4
    colorful                      0.5.4
    colorlog                      6.6.0
    colour                        0.1.5
    comet-ml                      3.28.2
    conda                         4.12.0
    conda-package-handling        1.8.1
    configobj                     5.0.6
    cryptography                  36.0.2
    cycler                        0.11.0
    cytoolz                       0.11.2
    dask                          2022.4.1
    dataclasses                   0.8
    Deprecated                    1.2.13
    dill                          0.3.4
    distributed                   2022.4.1
    dtreeviz                      1.3.5
    dulwich                       0.20.35
    everett                       3.0.0
    filelock                      3.6.0
    fonttools                     4.32.0
    frozenlist                    1.3.0
    fsspec                        2022.3.0
    future                        0.18.2
    gitdb                         4.0.9
    GitPython                     3.1.27
    google-api-core               2.5.0
    google-auth                   2.6.5
    googleapis-common-protos      1.56.0
    gpustat                       0.6.0
    graphviz                      0.20
    greenlet                      1.1.2
    grpcio                        1.45.0
    HeapDict                      1.0.1
    hiredis                       2.0.0
    idna                          3.3
    importlib-metadata            4.11.3
    importlib-resources           5.7.1
    iniconfig                     1.1.1
    Jinja2                        3.1.1
    jmespath                      1.0.0
    joblib                        1.1.0
    jsonref                       0.2
    jsonschema                    4.4.0
    kaleido                       0.2.1
    kiwisolver                    1.4.2
    libmambapy                    0.22.1
    lightgbm                      3.3.2
    llvmlite                      0.38.0
    locket                        0.2.0
    lz4                           4.0.0
    Mako                          1.2.0
    mamba                         0.22.1
    Markdown                      3.3.6
    MarkupSafe                    2.1.1
    matplotlib                    3.5.1
    mljar-supervised              0.11.2
    modin                         0.13.2
    monotonic                     1.5
    msgpack                       1.0.3
    multidict                     6.0.2
    munkres                       1.1.4
    neptune-client                0.16.1
    neptune-optuna                0.9.13
    numba                         0.53.1
    numpy                         1.22.3
    nvidia-ml-py3                 7.352.0
    oauthlib                      3.2.0
    opencensus                    0.9.0
    opencensus-context            0.1.2
    optuna                        2.10.0
    packaging                     21.3
    pandarallel                   1.5.5
    pandas                        1.4.0
    partd                         1.2.0
    patsy                         0.5.2
    pbr                           5.8.1
    Pillow                        9.1.0
    pip                           22.0.4
    plotly                        5.7.0
    pluggy                        1.0.0
    prettytable                   3.2.0
    prometheus-client             0.14.1
    protobuf                      3.19.4
    psutil                        5.9.0
    py                            1.11.0
    pyarrow                       7.0.0
    pyasn1                        0.4.8
    pyasn1-modules                0.2.7
    pycosat                       0.6.3
    pycparser                     2.21
    PyJWT                         2.3.0
    pyOpenSSL                     22.0.0
    pyparsing                     3.0.8
    pyperclip                     1.8.2
    pyrsistent                    0.18.1
    PySocks                       1.7.1
    pytest                        7.1.1
    python-dateutil               2.8.2
    pytz                          2022.1
    pyu2f                         0.1.5
    PyYAML                        6.0
    ray                           1.10.0
    redis                         4.2.2
    requests                      2.27.1
    requests-oauthlib             1.3.1
    requests-toolbelt             0.9.1
    rsa                           4.8
    ruamel-yaml-conda             0.15.80
    s3transfer                    0.5.2
    scikit-learn                  1.0.2
    scikit-plot                   0.3.7
    scipy                         1.8.0
    seaborn                       0.11.2
    semantic-version              2.9.0
    setproctitle                  1.2.2
    setuptools                    62.1.0
    shap                          0.40.0
    simplejson                    3.17.6
    six                           1.16.0
    slicer                        0.0.7
    smart-open                    5.2.1
    smmap                         3.0.5
    sortedcontainers              2.4.0
    SQLAlchemy                    1.4.35
    statsmodels                   0.13.2
    stevedore                     3.5.0
    swagger-spec-validator        2.7.4
    tabulate                      0.8.9
    tblib                         1.7.0
    tenacity                      8.0.1
    threadpoolctl                 3.1.0
    tomli                         2.0.1
    toolz                         0.11.2
    tornado                       6.1
    tqdm                          4.64.0
    typing_extensions             4.2.0
    unicodedata2                  14.0.0
    urllib3                       1.26.9
    wcwidth                       0.2.5
    websocket-client              1.3.2
    wheel                         0.37.1
    wordcloud                     1.8.1
    wrapt                         1.14.0
    wurlitzer                     3.0.2
    xgboost                       1.5.2
    yarl                          1.7.2
    zict                          2.1.0
    zipp                          3.8.0
    
    opened by filipsPL 25
  • Feature Request: Add explicit gcs driver for artifact tracking

    Feature Request: Add explicit gcs driver for artifact tracking

    Is your feature request related to a problem? Please describe.

    Setting up gcs with s3 doesn't seem trivial and potentially limiting? Now we have to create a boto config for each user and all machines that will run neptune code, which might affect the way the underlying gsutil operates.

    Describe the solution you'd like

    • I'd like a lower barrier of entry to track files on gcs. We use gcsfs, which is built on top of fsspec.
    • Another option is using google storage api directly.
    • A non-s3 approach to tracking files on gcs or better documentation on how to setup s3 for gcs.
    • Or maybe letting users register their own subclass of ArtifactDriver so you are off the hook?

    Describe alternatives you've considered

    • creating a boto file for gcs, but I believe it might affect the underlying behavior of gcs and will also require another secret to pass around in remote settings...
    opened by ljstrnadiii 19
  • BUG:   neptune.api_exceptions.SSLError: SSL certificate validation failed

    BUG: neptune.api_exceptions.SSLError: SSL certificate validation failed

    I am unable to log to neptune ai and it showing following error neptune.api_exceptions.SSLError: SSL certificate validation failed. Set NEPTUNE_ALLOW_SELF_SIGNED_CERTIFICATE environment variable to accept self-signed certificates.

    Specs pytorch-lightning==1.5.0
    neptune-client==0.13.1
    Ubunto 20.04
    Python 3.8.10

    CODE

    class OurModel(LightningModule):
        def __init__(self):
            super(OurModel,self).__init__()
            self.model =  timm.create_model(model_name,pretrained=True)
            self.fc1=nn.Linear(1000,500)
            self.relu=nn.ReLU()
            self.fc2= nn.Linear(500,1)
            #parameters
            self.lr=1e-3
            self.batch_size=72
            self.numworker=18
            self.acc = torchmetrics.Accuracy()
            self.criterion=nn.BCEWithLogitsLoss()
    
        def forward(self,x):
            x= self.model(x)
            x=self.fc1(x)
            x=self.relu(x)
            x=self.fc2(x)
            return x
    
        def configure_optimizers(self):
            opt=torch.optim.Adam(params=self.parameters(),lr=self.lr )
            scheduler=CosineAnnealingLR(opt,T_max=10,  eta_min=1e-6, last_epoch=-1)
            return {'optimizer': opt,'lr_scheduler':scheduler}
    
            
        def train_dataloader(self):
            return DataLoader(DataReader(df_train,aug), batch_size = self.batch_size, 
                              num_workers=self.numworker,pin_memory=True,shuffle=True)
    
        def training_step(self,batch,batch_idx):
            image,label=batch
            out = self(image).view(-1)
            loss=self.criterion(out,label.float())
            acc=self.acc(out,label.long())
            return {'loss':loss,'acc':acc}
    
        def training_epoch_end(self, outputs):
            loss=torch.stack([x["loss"] for x in outputs]).mean().detach().cpu().numpy().round(2)
            acc=torch.stack([x["acc"] for x in outputs]).mean().detach().cpu().numpy().round(2)
            self.trainacc.append(acc)
            self.trainloss.append(loss)
            self.log('train_loss', loss)
            self.log('train_acc', acc)
            
        def val_dataloader(self):
            ds=DataLoader(DataReader(df_val,aug), batch_size = self.batch_size,
                          num_workers=self.numworker,pin_memory=True, shuffle=False)
            return ds
    
        def validation_step(self,batch,batch_idx):
            image,label=batch
            out=self(image).view(-1)
            loss=self.criterion(out,label.float())
            acc=self.acc(out,label.long())
            return {'loss':loss,'acc':acc}
    
        def validation_epoch_end(self, outputs):
            loss=torch.stack([x["loss"] for x in outputs]).mean().detach().cpu().numpy().round(2)
            acc=torch.stack([x["acc"] for x in outputs]).mean().detach().cpu().numpy().round(2)
            self.valacc.append(acc)
            self.valloss.append(loss)
            print('validation loss accuracy ',self.current_epoch,loss, acc)
            self.log('val_loss', loss)
            self.log('val_acc', acc)
    
    
    
    model=OurModel()
    
    from pytorch_lightning.loggers import NeptuneLogger
    api_token=
    neptune_logger = NeptuneLogger(
        api_key=api_token,
        project="abc/xyz",
        name=model_name, 
        tags=[model_name, save_name],
    )
    
    seed_everything(0)
    
    checkpoint_callback = ModelCheckpoint(monitor='val_loss',dirpath='checkpoints',
                                          filename='file',save_last=True)
    lr_monitor = LearningRateMonitor(logging_interval='epoch')
    
    trainer = Trainer(max_epochs=50,
                      deterministic=True,
                      gpus=-1,precision=16,
                      accumulate_grad_batches=4,
                      enable_progress_bar = False,
                      callbacks=[checkpoint_callback,lr_monitor],
                      logger=neptune_logger
                      )
    
    trainer.fit(model)
    
    opened by talhaanwarch 16
  • I'm getting a 400 error:

    I'm getting a 400 error: "End of range is outside of given length"

    i am also getting similar error. The code is same as in #752

    Global seed set to 0
    validation loss accuracy  0 0.53 0.68
    validation loss accuracy  1 0.44 0.74
    validation loss accuracy  2 0.41 0.78
    validation loss accuracy  3 0.4 0.75
    validation loss accuracy  4 0.4 0.78
    validation loss accuracy  5 0.38 0.79
    validation loss accuracy  6 0.39 0.78
    validation loss accuracy  7 0.4 0.79
    Unexpected error occurred in Neptune background thread: Killing Neptune asynchronous thread. All data is safe on disk and can be later synced manually using `neptune sync` command.
    Exception in thread Thread-1:
    Traceback (most recent call last):
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/utils.py", line 71, in wrapper
        return func(*args, **kwargs)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 198, in upload_raw_data
        response.raise_for_status()
      File "/home/talha/venv/lib/python3.8/site-packages/requests/models.py", line 953, in raise_for_status
        raise HTTPError(http_error_msg, response=self)
    requests.exceptions.HTTPError: 400 Client Error:  for url: https://app.neptune.ai/api/leaderboard/v1/attributes/upload?experimentId=97e1dd32-9771-4562-92a4-7ad4728c8c6b&attribute=training%2Fmodel%2Fcheckpoints%2Flast.ckpt&ext=ckpt
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner
        self.run()
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 54, in run
        self.work()
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 177, in work
        self.process_batch(batch, version)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 78, in wrapper
        result = func(self_, *args, **kwargs)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 187, in process_batch
        result = self._processor._backend.execute_operations(self._processor._run_id, batch)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 349, in execute_operations
        self._execute_upload_operations_with_400_retry(
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 414, in _execute_upload_operations_with_400_retry
        raise ex
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 411, in _execute_upload_operations_with_400_retry
        return self._execute_upload_operations(run_id, upload_operations)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 374, in _execute_upload_operations
        error = upload_file_attribute(
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 56, in upload_file_attribute
        _upload_loop(file_chunk_stream=FileChunkStream(upload_entry),
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 162, in _upload_loop
        result = _upload_loop_chunk(chunk, file_chunk_stream, query_params=query_params.copy(), **kwargs)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_file_operations.py", line 180, in _upload_loop_chunk
        return upload_raw_data(data=chunk.get_data(), headers=headers, query_params=query_params, **kwargs)
      File "/home/talha/venv/lib/python3.8/site-packages/neptune/new/internal/backends/utils.py", line 106, in wrapper
        raise ClientHttpError(status_code, e.response.text) from e
    neptune.new.exceptions.ClientHttpError: 
    
    ----ClientHttpError-----------------------------------------------------------------------
    
    Neptune server returned status 400.
    
    Server response was:
    {"errorType":"BAD_REQUEST","code":400,"title":"End of range is outside of given length"}
    
    Verify the correctness of your call or contact Neptune support.
    
    Need help?-> https://docs.neptune.ai/getting-started/getting-help
    
    validation loss accuracy  8 0.39 0.79
    validation loss accuracy  9 0.39 0.8
    

    Originally posted by @talhaanwarch in https://github.com/neptune-ai/neptune-client/issues/751#issuecomment-980778809

    opened by Blaizzy 15
  • BUG: Neptune log error for multiple dataloaders

    BUG: Neptune log error for multiple dataloaders

    Describe the bug

    Error gets thrown while logging the metric value. Having Pytorch lightning integration with Neptune. This error gets thrown only in the latest client of Neptune's from neptune.new.integrations.pytorch_lightning import NeptuneLogger

    Reproduction

    https://colab.research.google.com/drive/13rRlztjGRQrv6Y3W-d21Dotoj8L2UtoZ?usp=sharing

    Expected behavior

    Experiment should keep running when without any error.

    Traceback

    Following trace as a result of invoking self.logger.log_metrics

        def __getattr__(self, attr):
    >       raise AttributeError("{} has no attribute {}.".format(type(self), attr))
    E       AttributeError: <class 'neptune.new.attributes.namespace.Namespace'> has no attribute log.
    env/lib/python3.8/site-packages/neptune/new/attributes/attribute.py:35: AttributeError
    
    
    image

    If the value of attr is None, then it passes the if condition and am not facing any error. Facing the issue in the else condition. neptune.new.handler.Handler.log self._path = "val_loss"

    Environment

    The output of pip list:

    neptune-contrib           0.27.2                   pypi_0    pypi
    neptune-pytorch-lightning 0.9.7                    pypi_0    pypi
    

    The operating system you're using: Ubuntu The output of python --version: Python 3.8.10

    Additional context It gets logged for all the metrics, only for this particular 'val_loss' key the error gets thrown. Happens only after migrating to new neptune client. Works fine with previous version. This error gets thrown only having more than one validation dataloader.

    EDIT: If we have multiple dataloaders, then all of the parameters that gets logged will have name of the dataloader appended. Ex: Suppose my log is self.log('loss',0.2) It will get logged for each of the dataloader along with its index in the log name and its corresponding value: loss/dataloader_0 = 0.2 , loss/dataloader_1=0.4 and so on for every dataloader. Since my metric to monitor is 'loss', PTL also expects exact string 'loss' value to be logged, otherwise it throws below error

      
    if not trainer.fit_loop.epoch_loop.val_loop._has_run:
                  warning_cache.warn(m)
              else:
                 raise MisconfigurationException(m)
    E               pytorch_lightning.utilities.exceptions.MisconfigurationException: ModelCheckpoint(monitor='loss') not found in the   returned metrics: ['train_loss', 'train_loss_step', 'loss/dataloader_idx_0', 'loss/dataloader_idx_1', 'validation_f1',  'validation_precision', 'validation_recall', 'validation_accuracy']. HINT: Did you call self.log('loss', value) in the LightningModule?
    
    

    But according to Neptune, 'loss' is now invalid once you have already logged 'loss/dataloader_1' (I guess) ? If so, you are both contradicting.

    opened by stonelazy 15
  • Seemingly non-deterministic

    Seemingly non-deterministic "No such file or dir" for async log file

    Hi!

    I have some issues with running and logging experiments.

    Sometimes (I couldn't figure out any reason for it) I get the following error when executing experiments. If it appears I don't get charts on the neptune dashboard as the async thread gets killed.

    Unexpected error occurred. Killing Neptune asynchronous thread. All data is safe on disk.
    Exception in thread Thread-1:
    Traceback (most recent call last):
      File "/home/ray/anaconda3/lib/python3.8/threading.py", line 932, in _bootstrap_inner
        self.run()
      File "/home/ray/anaconda3/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 46, in run
        self.work()
      File "/home/ray/anaconda3/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 129, in work
        self.process_batch(batch, version)
      File "/home/ray/anaconda3/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 136, in process_batch
        self._processor._queue.ack(version)
      File "/home/ray/anaconda3/lib/python3.8/site-packages/neptune/new/internal/containers/disk_queue.py", line 152, in ack
        os.remove(self._get_log_file(log_versions[i]))
    FileNotFoundError: [Errno 2] No such file or directory: '.neptune/async/0dbcf6c3-7248-455c-8056-845d97cf4e73/exec-0-2021-05-28_01.30.23.421819/data-1.log'
    

    The file does exist though.

    Running: Python 3.8.5 neptune-client 0.9.7 (using neptune.new)

    Thanks for any suggestions!

    opened by emanuel-metzenthin 14
  • PyTorch Lightning Integration

    PyTorch Lightning Integration

    Hello,

    When reloading an experiment and continuing to train the network neptune fails when logging to existing channels. Also to mention I am behind a proxy and have modifed the NepuneLogger of pytorch lightning:

    Best Jonas

    def _create_or_get_experiment2(self):
      proxies = {
      'http': 'http://magic.xyz:3128',
      'https': 'http://magic.xyz:3128',
      }
      if self.offline_mode:
          project = neptune.Session(backend=neptune.OfflineBackend()).get_project('dry-run/project')
      else:
          #project_qualified_name='jonasfrey96/ASL', api_token=os.environ["NEPTUNE_API_TOKEN"], proxies=proxies
          session = neptune.init(project_qualified_name='jonasfrey96/ASL', api_token=self.api_key,proxies=proxies) # add your credential
          print(type(session))
          session = neptune.Session(api_token=self.api_key,proxies=proxies)
          project = session.get_project(self.project_name)
    
      if self.experiment_id is None:
          e = project.create_experiment(name=self.experiment_name, **self._kwargs)
          self.experiment_id = e.id
      else:
          e = project.get_experiments(id=self.experiment_id)[0]
          self.experiment_name = e.get_system_properties()['name']
          self.params = e.get_parameters()
          self.properties = e.get_properties()
          self.tags = e.get_tags()
      return e
    NeptuneLogger._create_or_get_experiment = _create_or_get_experiment2 # Super bad !!!
    

    Here is the Traceback:

    Traceback (most recent call last):
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 337, in unmarshal_response
        op=operation,
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 370, in unmarshal_response_inner
        response_spec = get_response_spec(status_code=response.status_code, op=op)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado_core/response.py", line 160, in get_response_spec
        "status_code or use a `default` response.".format(status_code, op),
    bravado_core.exception.MatchingResponseNotFound: Response specification matching http status_code 409 not found for operation Operation(createChannel). Either add a response specification for the status_code or use a `default` response.
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/neptune/internal/backends/hosted_neptune_backend.py", line 483, in create_channel
        channelToCreate=params
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 200, in response
        swagger_result = self._get_swagger_result(incoming_response)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 124, in wrapper
        return func(self, *args, **kwargs)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 303, in _get_swagger_result
        self.request_config.response_callbacks,
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 347, in unmarshal_response
        sys.exc_info()[2])
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/six.py", line 702, in reraise
        raise value.with_traceback(tb)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 337, in unmarshal_response
        op=operation,
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado/http_future.py", line 370, in unmarshal_response_inner
        response_spec = get_response_spec(status_code=response.status_code, op=op)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/bravado_core/response.py", line 160, in get_response_spec
        "status_code or use a `default` response.".format(status_code, op),
    bravado.exception.HTTPConflict: 409 : Response specification matching http status_code 409 not found for operation Operation(createChannel). Either add a response specification for the status_code or use a `default` response.
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "main.py", line 482, in <module>
        val_dataloaders= dataloader_list_test)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 513, in fit
        self.dispatch()
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 553, in dispatch
        self.accelerator.start_training(self)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py", line 74, in start_training
        self.training_type_plugin.start_training(trainer)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 111, in start_training
        self._results = trainer.run_train()
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 644, in run_train
        self.train_loop.run_training_epoch()
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 559, in run_training_epoch
        epoch_output, self.checkpoint_accumulator, self.early_stopping_accumulator, self.num_optimizers
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/logger_connector/logger_connector.py", line 469, in log_train_epoch_end_metrics
        self.log_metrics(epoch_log_metrics, {})
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/logger_connector/logger_connector.py", line 244, in log_metrics
        self.trainer.logger.save()
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 302, in save
        self._finalize_agg_metrics()
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 145, in _finalize_agg_metrics
        self.log_metrics(metrics=metrics_to_log, step=agg_step)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py", line 40, in wrapped_fn
        return fn(*args, **kwargs)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/loggers/neptune.py", line 259, in log_metrics
        self.log_metric(key, val)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py", line 40, in wrapped_fn
        return fn(*args, **kwargs)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/pytorch_lightning/loggers/neptune.py", line 302, in log_metric
        self.experiment.log_metric(metric_name, metric_value)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/neptune/experiments.py", line 375, in log_metric
        self._channels_values_sender.send(log_name, ChannelType.NUMERIC.value, value)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/neptune/internal/channels/channels_values_sender.py", line 66, in send
        response = self._experiment._create_channel(channel_name, channel_type, channel_namespace)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/neptune/experiments.py", line 1195, in _create_channel
        return self._backend.create_channel(self, channel_name, channel_type)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/neptune/utils.py", line 211, in wrapper
        return func(*args, **kwargs)
      File "/cluster/home/jonfrey/miniconda3/envs/track4/lib/python3.7/site-packages/neptune/internal/backends/hosted_neptune_backend.py", line 492, in create_channel
        raise ChannelAlreadyExists(channel_name=name, experiment_short_id=experiment.id)
    
    opened by JonasFrey96 14
  • BUG: ClientHttpError during training

    BUG: ClientHttpError during training

    Describe the bug

    Sometimes, during the training, there is a ClientHttpError raised

    Reproduction

    I am running a minimal working example on MNIST with the new Lightning integration. I can reproduce this in two different machines.

    Traceback

    Exception in thread Thread-1:
    Traceback (most recent call last):
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 335, in unmarshal_response
        incoming_response.swagger_result = unmarshal_response_inner(  # type: ignore
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 370, in unmarshal_response_inner
        response_spec = get_response_spec(status_code=response.status_code, op=op)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado_core/response.py", line 157, in get_response_spec
        raise MatchingResponseNotFound(
    bravado_core.exception.MatchingResponseNotFound: Response specification matching http status_code 400 not found for operation Operation(executeOperations). Either add a response specification for the status_code or use a `default` response.
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/backends/utils.py", line 71, in wrapper
        return func(*args, **kwargs)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 473, in _execute_operations
        result = self.leaderboard_client.api.executeOperations(**kwargs).response().result
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 200, in response
        swagger_result = self._get_swagger_result(incoming_response)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 124, in wrapper
        return func(self, *args, **kwargs)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 300, in _get_swagger_result
        unmarshal_response(
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 344, in unmarshal_response
        six.reraise(
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/six.py", line 718, in reraise
        raise value.with_traceback(tb)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 335, in unmarshal_response
        incoming_response.swagger_result = unmarshal_response_inner(  # type: ignore
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado/http_future.py", line 370, in unmarshal_response_inner
        response_spec = get_response_spec(status_code=response.status_code, op=op)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/bravado_core/response.py", line 157, in get_response_spec
        raise MatchingResponseNotFound(
    bravado.exception.HTTPBadRequest: 400 : Response specification matching http status_code 400 not found for operation Operation(executeOperations). Either add a response specification for the status_code or use a `default` response.
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/threading.py", line 932, in _bootstrap_inner
        self.run()
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 54, in run
        self.work()
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 177, in work
        self.process_batch(batch, version)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/threading/daemon.py", line 78, in wrapper
        result = func(self_, *args, **kwargs)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/operation_processors/async_operation_processor.py", line 187, in process_batch
        result = self._processor._backend.execute_operations(self._processor._run_id, batch)
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/backends/hosted_neptune_backend.py", line 363, in execute_operations
        errors.extend(self._execute_operations(run_id, other_operations))
      File "/home/luca/miniconda3/envs/lightning-project-template/lib/python3.8/site-packages/neptune/new/internal/backends/utils.py", line 86, in wrapper
        raise ClientHttpError(e.status_code, e.response.text) from e
    neptune.new.exceptions.ClientHttpError: 
    
    ----ClientHttpError-----------------------------------------------------------------------
    
    Neptune server returned status 400.
    
    Server response was:
    {"code":400,"errorType":"MALFORMED_JSON_REQUEST","title":"Malformed JSON request: JSON parse error: Numeric value (2470129626) out of range of int (-2147483648 - 2147483647); nested exception is com.fasterxml.jackson.databind.JsonMappingException: Numeric value (2470129626) out of range of int (-2147483648 - 2147483647)\n at [Source: (PushbackInputStream); line: 1, column: 16817] (through reference chain: java.util.ArrayList[54]->ml.neptune.leaderboard.api.model.operation.OperationDTO[\"assignInt\"]->ml.neptune.leaderboard.api.model.operation.AssignIntDTO[\"value\"])"}
    
    Verify the correctness of your call or contact Neptune support.
    
    Need help?-> https://docs.neptune.ai/getting-started/getting-help
    

    Environment

    The output of pip list:

    ❯ pip list
    Package                           Version              Location
    --------------------------------- -------------------- ----------------------------------------------------------------
    absl-py                           1.0.0
    aiohttp                           3.8.1
    aiosignal                         1.2.0
    antlr4-python3-runtime            4.8
    async-timeout                     4.0.1
    attrs                             21.2.0
    azure-core                        1.20.1
    azure-storage-blob                12.9.0
    backports.entry-points-selectable 1.1.1
    black                             21.10b0
    boto3                             1.20.5
    botocore                          1.23.5
    bravado                           11.0.3
    bravado-core                      5.17.0
    cachetools                        4.2.4
    certifi                           2021.10.8
    cffi                              1.15.0
    cfgv                              3.3.1
    charset-normalizer                2.0.7
    click                             8.0.3
    cloudpathlib                      0.6.2
    cloudpickle                       2.0.0
    coverage                          6.1.2
    cryptography                      35.0.0
    dacite                            1.6.0
    dill                              0.3.4
    distlib                           0.3.3
    filelock                          3.3.2
    flake8                            4.0.1
    frozenlist                        1.2.0
    fsspec                            2021.11.0
    future                            0.18.2
    ghp-import                        2.0.2
    gitdb                             4.0.9
    GitPython                         3.1.24
    google-api-core                   2.2.2
    google-auth                       2.3.3
    google-auth-oauthlib              0.4.6
    google-cloud-core                 2.2.1
    google-cloud-storage              1.42.3
    google-crc32c                     1.3.0
    google-resumable-media            2.1.0
    googleapis-common-protos          1.53.0
    grpcio                            1.41.1
    identify                          2.3.5
    idna                              3.3
    importlib-metadata                4.8.2
    iniconfig                         1.1.1
    isodate                           0.6.0
    isort                             5.10.1
    Jinja2                            3.0.3
    jmespath                          0.10.0
    jsonpointer                       2.2
    jsonref                           0.2
    jsonschema                        3.2.0
    lightning-project-template        0.1.dev1+gc63e8fd    /home/luca/Projects/CookieTesting/lightning-project-template/src
    Markdown                          3.3.4
    MarkupSafe                        2.0.1
    mccabe                            0.6.1
    mergedeep                         1.3.4
    mkapi                             1.0.14
    mkdocs                            1.2.3
    mkdocs-material                   7.3.6
    mkdocs-material-extensions        1.0.3
    monotonic                         1.6
    msgpack                           1.0.2
    msrest                            0.6.21
    multidict                         5.2.0
    mypy-extensions                   0.4.3
    natsort                           8.0.0
    neptune-client                    0.13.1
    nodeenv                           1.6.0
    numpy                             1.21.4
    oauthlib                          3.1.1
    olefile                           0.46
    omegaconf                         2.1.1
    packaging                         21.2
    pandas                            1.3.4
    pathspec                          0.9.0
    Pillow                            8.4.0
    pip                               21.2.4
    platformdirs                      2.4.0
    pluggy                            1.0.0
    pre-commit                        2.15.0
    prime-config                      0.9.3.dev24+g2885489
    prime-pack                        0.3.dev61+g3c35037
    prime-utils                       1.0.0
    protobuf                          3.19.1
    psutil                            5.8.0
    py                                1.11.0
    pyasn1                            0.4.8
    pyasn1-modules                    0.2.8
    pycodestyle                       2.8.0
    pycparser                         2.21
    pyDeprecate                       0.3.1
    pyflakes                          2.4.0
    Pygments                          2.10.0
    PyJWT                             2.3.0
    pymdown-extensions                9.1
    pyparsing                         2.4.7
    pyrsistent                        0.18.0
    pytest                            6.2.5
    pytest-cov                        3.0.0
    python-dateutil                   2.8.2
    python-dotenv                     0.19.2
    pytorch-lightning                 1.5.1
    pytz                              2021.3
    PyYAML                            6.0
    pyyaml_env_tag                    0.1
    regex                             2021.11.10
    requests                          2.26.0
    requests-oauthlib                 1.3.0
    rfc3987                           1.3.8
    rsa                               4.7.2
    s3transfer                        0.5.0
    setuptools                        58.0.4
    simplejson                        3.17.5
    six                               1.16.0
    smmap                             5.0.0
    strict-rfc3339                    0.7
    swagger-spec-validator            2.7.4
    tensorboard                       2.7.0
    tensorboard-data-server           0.6.1
    tensorboard-plugin-wit            1.8.0
    toml                              0.10.2
    tomli                             1.2.2
    torch                             1.9.0
    torchmetrics                      0.6.0
    torchvision                       0.10.0
    tqdm                              4.62.3
    typing-extensions                 3.10.0.2
    urllib3                           1.26.7
    virtualenv                        20.10.0
    watchdog                          2.1.6
    webcolors                         1.11.1
    websocket-client                  1.2.1
    Werkzeug                          2.0.2
    wheel                             0.37.0
    yarl                              1.7.2
    zipp                              3.6.0
    

    The operating system you're using: Ubuntu The output of python --version: Python 3.8.12

    opened by lucmos 13
  • Feature Request: Downloading metrics from multiple runs is slow due to init.

    Feature Request: Downloading metrics from multiple runs is slow due to init.

    Usually, to make statistical analysis for experiments one needs to download metrics from multiple runs, like 50, 100 or even more. But downloading metrics or files from runs takes a lot of time since for each run, one need to execute neptune.init, which itself takes around 2 seconds. For 1000 runs it is 2000 seconds ~= 30 minutes. Would be nice if we could connect to the server only once but download things from multiple runs.

    opened by wjaskowski 12
  • BUG: Syncing takes forever.

    BUG: Syncing takes forever.

    Describe the bug

    Am using Pytorch lightning for training. Once the training is complete, am getting the dialog
    Still waiting for the remaining operations to complete and this is going on forever ( atleast 2days now)

    Reproduction

    This isn't reproducible all the time, only under certain cases.. In the past 2 months i would have faced this 3-4 times.

    Traceback

    image ### Environment Collecting environment information... PyTorch version: 1.10.0+cu111 Is debug build: False CUDA used to build PyTorch: 11.1 ROCM used to build PyTorch: N/A

    OS: Ubuntu 20.04.3 LTS (x86_64) GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.31

    Python version: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.11.0-38-generic-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: Could not collect GPU models and configuration: GPU 0: RTX A6000 GPU 1: RTX A6000 GPU 2: RTX A6000 GPU 3: RTX A6000 GPU 4: RTX A6000 GPU 5: RTX A6000 GPU 6: RTX A6000 GPU 7: RTX A6000

    Nvidia driver version: 460.91.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A

    Versions of relevant libraries: [pip3] mypy==0.910 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.1 [pip3] pytorch-lightning==1.5.7 [pip3] torch==1.10.0+cu111 [pip3] torch-poly-lr-decay==0.0.1 [pip3] torchaudio==0.10.0+cu111 [pip3] torchmetrics==0.6.2 [pip3] neptune-client==0.12.1

    Additional context

    Add any other context about the problem here.

    opened by stonelazy 11
  • Draft: User can provide a path for git repo discovery

    Draft: User can provide a path for git repo discovery

    # Default behavior 
    with neptune.init_run():
        pass
    
    # Do not track repository
    with neptune.init_run(git_info=GitInfo()):
        pass
    # or
    with neptune.init_run(git_info=NoRepository):
        pass
    
    with neptune.init_run(git_info=GitInfo(repository_path='~/Repos/neptune-client-dev')):
        pass
    
    opened by Raalsky 1
  • BUG: async mode freeze learning

    BUG: async mode freeze learning

    Describe the bug

    I am trying neptune logger in Pytorch Lightning.

    This is how I init the Logger (I am not using env variables but passing each argument directly:

    logger = NeptuneLogger(api_key=get_api_token(project_path), project=project-name, name=run_name, log_model_checkpoints=False, mode=logger_mode)
    

    If I set logger_mode='debug' or logger_mode='sync' everything works fine, and I am able to log all the metrics.
    If I set logger_mode='async' (which should be default), the training freezes after approx 1 epoch, in the middle of it.
    By freezing, I mean that the std_out is something like that:

    2022/12/07 15:18:52	Epoch 1: 20%|██ | 151/750 [00:57<03:47, 2.64it/s, loss=0.0676, v_num=E-11]
    2022/12/07 15:18:52	Epoch 1: 20%|██ | 152/750 [00:57<03:46, 2.64it/s, loss=0.0676, v_num=E-11]
    2022/12/07 15:18:52	Epoch 1: 20%|██ | 152/750 [00:57<03:46, 2.64it/s, loss=0.0658, v_num=E-11]
    2022/12/07 15:18:53	Epoch 1: 20%|██ | 153/750 [00:57<03:46, 2.64it/s, loss=0.0658, v_num=E-11]
    2022/12/07 15:18:53	Epoch 1: 20%|██ | 153/750 [00:57<03:46, 2.64it/s, loss=0.0649, v_num=E-11]
    2022/12/07 15:18:53	Epoch 1: 21%|██ | 154/750 [00:58<03:45, 2.64it/s, loss=0.0649, v_num=E-11]
    2022/12/07 15:18:53	Epoch 1: 21%|██ | 154/750 [00:58<03:45, 2.64it/s, loss=0.0658, v_num=E-11]
    2022/12/07 15:18:54	Epoch 1: 21%|██ | 155/750 [00:58<03:45, 2.64it/s, loss=0.0658, v_num=E-11]
    2022/12/07 15:18:54	Epoch 1: 21%|██ | 155/750 [00:58<03:45, 2.64it/s, loss=0.0658, v_num=E-11]
    2022/12/07 15:18:54	Epoch 1: 21%|██ | 156/750 [00:59<03:45, 2.64it/s, loss=0.0658, v_num=E-11]
    2022/12/07 15:18:54	Epoch 1: 21%|██ | 156/750 [00:59<03:45, 2.64it/s, loss=0.066, v_num=E-11]
    2022/12/07 15:18:55	Epoch 1: 21%|██ | 157/750 [00:59<03:44, 2.64it/s, loss=0.066, v_num=E-11]
    2022/12/07 15:18:55	Epoch 1: 21%|██ | 157/750 [00:59<03:44, 2.64it/s, loss=0.0638, v_num=E-11]
    2022/12/07 15:18:55	Epoch 1: 21%|██ | 158/750 [00:59<03:44, 2.63it/s, loss=0.0638, v_num=E-11]
    2022/12/07 15:18:55	Epoch 1: 21%|██ | 158/750 [00:59<03:44, 2.63it/s, loss=0.0607, v_num=E-11]
    2022/12/07 15:18:55	Epoch 1: 21%|██ | 159/750 [01:00<03:44, 2.64it/s, loss=0.0607, v_num=E-11]
    2022/12/07 15:18:55	Epoch 1: 21%|██ | 159/750 [01:00<03:44, 2.64it/s, loss=0.0625, v_num=E-11]
    

    and no exceptions are raised. The progress bar just stops.

    Reproduction

    I have followed the instructions to create the logger object with PL.

    In my training loop, I log some values like: self.log(f'metrics/training/loss', loss, sync_dist=True)

    and some torch tensors like: self.logger.experiment[f'training/images/gt'].upload(File.as_image(my_tensor))

    Expected behavior

    async mode should log correctly, without freezing.

    Traceback

    No Traceback is displayed.

    Environment

    The output of conda list:

    # Name                    Version                   Build  Channel
    _libgcc_mutex             0.1                 conda_forge    conda-forge
    _openmp_mutex             4.5                       2_gnu    conda-forge
    aiohttp                   3.8.3                    pypi_0    pypi
    aiosignal                 1.3.1                    pypi_0    pypi
    alsa-lib                  1.2.8                h166bdaf_0    conda-forge
    aom                       3.5.0                h27087fc_0    conda-forge
    arrow                     1.2.3                    pypi_0    pypi
    assertpy                  1.1                      pypi_0    pypi
    async-timeout             4.0.2                    pypi_0    pypi
    attr                      2.5.1                h166bdaf_1    conda-forge
    attrs                     22.1.0             pyh71513ae_1    conda-forge
    binutils                  2.39                 hdd6e379_1    conda-forge
    binutils_impl_linux-64    2.39                 he00db2b_1    conda-forge
    binutils_linux-64         2.39                h5fc0e48_11    conda-forge
    blas                      1.0                         mkl  
    blinker                   1.5                pyhd8ed1ab_0    conda-forge
    boto3                     1.26.24            pyhd8ed1ab_0    conda-forge
    botocore                  1.29.24            pyhd8ed1ab_0    conda-forge
    braceexpand               0.1.7                    pypi_0    pypi
    bravado                   11.0.3             pyhd8ed1ab_0    conda-forge
    bravado-core              5.17.1             pyhd8ed1ab_0    conda-forge
    brotlipy                  0.7.0           py310h7f8727e_1002  
    bzip2                     1.0.8                h7b6447c_0  
    c-ares                    1.18.1               h7f98852_0    conda-forge
    c-compiler                1.5.1                h166bdaf_0    conda-forge
    ca-certificates           2022.9.24            ha878542_0    conda-forge
    cairo                     1.16.0            ha61ee94_1014    conda-forge
    certifi                   2022.9.24          pyhd8ed1ab_0    conda-forge
    cffi                      1.15.1          py310h5eee18b_2  
    charset-normalizer        2.0.4              pyhd3eb1b0_0  
    click                     8.1.3           unix_pyhd8ed1ab_2    conda-forge
    compilers                 1.5.1                ha770c72_0    conda-forge
    contourpy                 1.0.6                    pypi_0    pypi
    cryptography              38.0.1          py310h9ce1e76_0  
    cuda                      11.6.2                        0    nvidia
    cuda-cccl                 11.6.55              hf6102b2_0    nvidia
    cuda-command-line-tools   11.6.2                        0    nvidia
    cuda-compiler             11.6.2                        0    nvidia
    cuda-cudart               11.6.55              he381448_0    nvidia
    cuda-cudart-dev           11.6.55              h42ad0f4_0    nvidia
    cuda-cuobjdump            11.6.124             h2eeebcb_0    nvidia
    cuda-cupti                11.6.124             h86345e5_0    nvidia
    cuda-cuxxfilt             11.6.124             hecbf4f6_0    nvidia
    cuda-driver-dev           11.6.55                       0    nvidia
    cuda-gdb                  11.8.86                       0    nvidia
    cuda-libraries            11.6.2                        0    nvidia
    cuda-libraries-dev        11.6.2                        0    nvidia
    cuda-memcheck             11.8.86                       0    nvidia
    cuda-nsight               11.8.86                       0    nvidia
    cuda-nsight-compute       11.8.0                        0    nvidia
    cuda-nvcc                 11.6.124             hbba6d2d_0    nvidia
    cuda-nvdisasm             11.8.86                       0    nvidia
    cuda-nvml-dev             11.6.55              haa9ef22_0    nvidia
    cuda-nvprof               11.8.87                       0    nvidia
    cuda-nvprune              11.6.124             he22ec0a_0    nvidia
    cuda-nvrtc                11.6.124             h020bade_0    nvidia
    cuda-nvrtc-dev            11.6.124             h249d397_0    nvidia
    cuda-nvtx                 11.6.124             h0630a44_0    nvidia
    cuda-nvvp                 11.8.87                       0    nvidia
    cuda-runtime              11.6.2                        0    nvidia
    cuda-samples              11.6.101             h8efea70_0    nvidia
    cuda-sanitizer-api        11.8.86                       0    nvidia
    cuda-toolkit              11.6.2                        0    nvidia
    cuda-tools                11.6.2                        0    nvidia
    cuda-visual-tools         11.6.2                        0    nvidia
    cudatoolkit               11.8.0              h37601d7_11    conda-forge
    cupy                      11.3.0          py310h9216885_1    conda-forge
    cxx-compiler              1.5.1                h924138e_0    conda-forge
    cycler                    0.11.0                   pypi_0    pypi
    dataclasses               0.8                pyhc8e2a94_3    conda-forge
    dbus                      1.13.6               h5008d03_3    conda-forge
    docker-pycreds            0.4.0                    pypi_0    pypi
    einops                    0.6.0                    pypi_0    pypi
    expat                     2.5.0                h27087fc_0    conda-forge
    fairscale                 0.4.12                   pypi_0    pypi
    fastargs                  1.2.0                    pypi_0    pypi
    fastrlock                 0.8             py310hd8f1fbe_3    conda-forge
    ffcv                      0.0.3                    pypi_0    pypi
    ffmpeg                    5.1.2           gpl_hc51e5dc_103    conda-forge
    fftw                      3.3.10          nompi_hf0379b8_106    conda-forge
    fire                      0.4.0                    pypi_0    pypi
    flit-core                 3.6.0              pyhd3eb1b0_0  
    font-ttf-dejavu-sans-mono 2.37                 hab24e00_0    conda-forge
    font-ttf-inconsolata      3.000                h77eed37_0    conda-forge
    font-ttf-source-code-pro  2.038                h77eed37_0    conda-forge
    font-ttf-ubuntu           0.83                 hab24e00_0    conda-forge
    fontconfig                2.14.1               hc2a2eb6_0    conda-forge
    fonts-conda-ecosystem     1                             0    conda-forge
    fonts-conda-forge         1                             0    conda-forge
    fonttools                 4.38.0                   pypi_0    pypi
    fortran-compiler          1.5.1                h2a4ca65_0    conda-forge
    fqdn                      1.5.1                    pypi_0    pypi
    freeglut                  3.2.2                h9c3ff4c_1    conda-forge
    freetype                  2.12.1               h4a9f257_0  
    frozenlist                1.3.3                    pypi_0    pypi
    fsspec                    2022.11.0                pypi_0    pypi
    future                    0.18.2             pyhd8ed1ab_6    conda-forge
    gcc                       10.4.0              hb92f740_11    conda-forge
    gcc_impl_linux-64         10.4.0              h5231bdf_19    conda-forge
    gcc_linux-64              10.4.0              h9215b83_11    conda-forge
    gds-tools                 1.4.0.31                      0    nvidia
    gettext                   0.21.1               h27087fc_0    conda-forge
    gfortran                  10.4.0              h0c96582_11    conda-forge
    gfortran_impl_linux-64    10.4.0              h7d168d2_19    conda-forge
    gfortran_linux-64         10.4.0              h69d5af5_11    conda-forge
    giflib                    5.2.1                h7b6447c_0  
    gitdb                     4.0.10             pyhd8ed1ab_0    conda-forge
    gitpython                 3.1.29             pyhd8ed1ab_0    conda-forge
    glib                      2.74.1               h6239696_1    conda-forge
    glib-tools                2.74.1               h6239696_1    conda-forge
    gmp                       6.2.1                h295c915_3  
    gnutls                    3.7.8                hf3e180e_0    conda-forge
    graphite2                 1.3.13            h58526e2_1001    conda-forge
    gst-plugins-base          1.21.2               h3e40eee_0    conda-forge
    gstreamer                 1.21.2               hd4edc92_0    conda-forge
    gstreamer-orc             0.4.33               h166bdaf_0    conda-forge
    gxx                       10.4.0              hb92f740_11    conda-forge
    gxx_impl_linux-64         10.4.0              h5231bdf_19    conda-forge
    gxx_linux-64              10.4.0              h6e491c6_11    conda-forge
    harfbuzz                  5.3.0                h418a68e_0    conda-forge
    hdf5                      1.12.2          nompi_h4df4325_100    conda-forge
    icu                       70.1                 h27087fc_0    conda-forge
    idna                      3.4             py310h06a4308_0  
    imgcat                    0.5.0                    pypi_0    pypi
    importlib-metadata        5.1.0              pyha770c72_0    conda-forge
    importlib_resources       5.10.1             pyhd8ed1ab_0    conda-forge
    intel-openmp              2021.4.0          h06a4308_3561  
    isoduration               20.11.0                  pypi_0    pypi
    jack                      1.9.21               h583fa2b_2    conda-forge
    jasper                    2.0.33               ha77e612_0    conda-forge
    jmespath                  1.0.1              pyhd8ed1ab_0    conda-forge
    jpeg                      9e                   h7f8727e_0  
    jsonpointer               2.3                      pypi_0    pypi
    jsonref                   0.2                        py_0    conda-forge
    jsonschema                4.17.3             pyhd8ed1ab_0    conda-forge
    kernel-headers_linux-64   2.6.32              he073ed8_15    conda-forge
    keyutils                  1.6.1                h166bdaf_0    conda-forge
    kiwisolver                1.4.4                    pypi_0    pypi
    kornia                    0.6.8              pyhd8ed1ab_0    conda-forge
    krb5                      1.19.3               h08a2579_0    conda-forge
    lame                      3.100                h7b6447c_0  
    lcms2                     2.12                 h3be6417_0  
    ld_impl_linux-64          2.39                 hcc3a1bd_1    conda-forge
    lerc                      3.0                  h295c915_0  
    libblas                   3.9.0            12_linux64_mkl    conda-forge
    libcap                    2.66                 ha37c62d_0    conda-forge
    libcblas                  3.9.0            12_linux64_mkl    conda-forge
    libclang                  15.0.6          default_h2e3cab8_0    conda-forge
    libclang13                15.0.6          default_h3a83d3e_0    conda-forge
    libcublas                 11.11.3.6                     0    nvidia
    libcublas-dev             11.11.3.6                     0    nvidia
    libcufft                  10.9.0.58                     0    nvidia
    libcufft-dev              10.9.0.58                     0    nvidia
    libcufile                 1.4.0.31                      0    nvidia
    libcufile-dev             1.4.0.31                      0    nvidia
    libcups                   2.3.3                h3e49a29_2    conda-forge
    libcurand                 10.3.0.86                     0    nvidia
    libcurand-dev             10.3.0.86                     0    nvidia
    libcurl                   7.86.0               h2283fc2_1    conda-forge
    libcusolver               11.4.1.48                     0    nvidia
    libcusolver-dev           11.4.1.48                     0    nvidia
    libcusparse               11.7.5.86                     0    nvidia
    libcusparse-dev           11.7.5.86                     0    nvidia
    libdb                     6.2.32               h9c3ff4c_0    conda-forge
    libdeflate                1.8                  h7f8727e_5  
    libdrm                    2.4.114              h166bdaf_0    conda-forge
    libedit                   3.1.20191231         he28a2e2_2    conda-forge
    libev                     4.33                 h516909a_1    conda-forge
    libevent                  2.1.10               h28343ad_4    conda-forge
    libffi                    3.4.2                h6a678d5_6  
    libflac                   1.4.2                h27087fc_0    conda-forge
    libgcc-devel_linux-64     10.4.0              hd38fd1e_19    conda-forge
    libgcc-ng                 12.2.0              h65d4601_19    conda-forge
    libgcrypt                 1.10.1               h166bdaf_0    conda-forge
    libgfortran-ng            12.2.0              h69a702a_19    conda-forge
    libgfortran5              12.2.0              h337968e_19    conda-forge
    libglib                   2.74.1               h606061b_1    conda-forge
    libglu                    9.0.0             he1b5a44_1001    conda-forge
    libgomp                   12.2.0              h65d4601_19    conda-forge
    libgpg-error              1.45                 hc0c96e0_0    conda-forge
    libiconv                  1.17                 h166bdaf_0    conda-forge
    libidn2                   2.3.2                h7f8727e_0  
    libjpeg-turbo             2.1.4                h166bdaf_0    conda-forge
    liblapack                 3.9.0            12_linux64_mkl    conda-forge
    liblapacke                3.9.0            12_linux64_mkl    conda-forge
    libllvm11                 11.1.0               he0ac6c6_5    conda-forge
    libllvm15                 15.0.6               h63197d8_0    conda-forge
    libnghttp2                1.47.0               hff17c54_1    conda-forge
    libnpp                    11.8.0.86                     0    nvidia
    libnpp-dev                11.8.0.86                     0    nvidia
    libnsl                    2.0.0                h7f98852_0    conda-forge
    libnvjpeg                 11.9.0.86                     0    nvidia
    libnvjpeg-dev             11.9.0.86                     0    nvidia
    libogg                    1.3.4                h7f98852_1    conda-forge
    libopencv                 4.6.0           py310h6214075_6    conda-forge
    libopus                   1.3.1                h7f98852_1    conda-forge
    libpciaccess              0.17                 h166bdaf_0    conda-forge
    libpng                    1.6.39               h753d276_0    conda-forge
    libpq                     15.1                 h67c24c5_1    conda-forge
    libprotobuf               3.21.10              h6239696_0    conda-forge
    libsanitizer              10.4.0              h5246dfb_19    conda-forge
    libsndfile                1.1.0                hcb278e6_1    conda-forge
    libsqlite                 3.40.0               h753d276_0    conda-forge
    libssh2                   1.10.0               hf14f497_3    conda-forge
    libstdcxx-devel_linux-64  10.4.0              hd38fd1e_19    conda-forge
    libstdcxx-ng              12.2.0              h46fd767_19    conda-forge
    libsystemd0               252                  h2a991cd_0    conda-forge
    libtasn1                  4.19.0               h166bdaf_0    conda-forge
    libtiff                   4.4.0                hecacb30_2  
    libtool                   2.4.6             h9c3ff4c_1008    conda-forge
    libudev1                  252                  h166bdaf_0    conda-forge
    libunistring              0.9.10               h27cfd23_0  
    libuuid                   2.32.1            h7f98852_1000    conda-forge
    libva                     2.16.0               h166bdaf_0    conda-forge
    libvorbis                 1.3.7                h9c3ff4c_0    conda-forge
    libvpx                    1.11.0               h9c3ff4c_3    conda-forge
    libwebp                   1.2.4                h11a3e52_0  
    libwebp-base              1.2.4                h5eee18b_0  
    libxcb                    1.13              h7f98852_1004    conda-forge
    libxkbcommon              1.0.3                he3ba5ed_0    conda-forge
    libxml2                   2.10.3               h7463322_0    conda-forge
    libzlib                   1.2.13               h166bdaf_4    conda-forge
    lightning-utilities       0.3.0                    pypi_0    pypi
    llvmlite                  0.39.1          py310h58363a5_1    conda-forge
    lz4-c                     1.9.3                h295c915_1  
    matplotlib                3.6.2                    pypi_0    pypi
    mkl                       2021.4.0           h06a4308_640  
    mkl-service               2.4.0           py310h7f8727e_0  
    mkl_fft                   1.3.1           py310hd6ae3a3_0  
    mkl_random                1.2.2           py310h00e6091_0  
    monotonic                 1.5                        py_0    conda-forge
    mpg123                    1.31.1               h27087fc_0    conda-forge
    msgpack-python            1.0.4           py310hbf28c38_1    conda-forge
    multidict                 6.0.3                    pypi_0    pypi
    mysql-common              8.0.31               h26416b9_0    conda-forge
    mysql-libs                8.0.31               hbc51c84_0    conda-forge
    ncurses                   6.3                  h5eee18b_3  
    neptune-client            0.16.14            pyhd8ed1ab_0    conda-forge
    nettle                    3.8.1                hc379101_1    conda-forge
    nsight-compute            2022.3.0.22                   0    nvidia
    nspr                      4.35                 h27087fc_0    conda-forge
    nss                       3.82                 he02c5a1_0    conda-forge
    numba                     0.56.4          py310ha5257ce_0    conda-forge
    numpy                     1.23.4          py310hd5efca6_0  
    numpy-base                1.23.4          py310h8e6c178_0  
    oauthlib                  3.2.2              pyhd8ed1ab_0    conda-forge
    opencv                    4.6.0           py310hff52083_6    conda-forge
    openh264                  2.3.1                h27087fc_1    conda-forge
    openssl                   3.0.7                h0b41bf4_1    conda-forge
    p11-kit                   0.24.1               hc5aa10d_0    conda-forge
    packaging                 21.3               pyhd8ed1ab_0    conda-forge
    pandas                    1.5.2                    pypi_0    pypi
    pathtools                 0.1.2                    pypi_0    pypi
    pcre2                     10.40                hc3806b6_0    conda-forge
    pillow                    9.2.0           py310hace64e9_1  
    pip                       22.2.2          py310h06a4308_0  
    pixman                    0.40.0               h36c2ea0_0    conda-forge
    pkg-config                0.29.2            h36c2ea0_1008    conda-forge
    pkgutil-resolve-name      1.3.10             pyhd8ed1ab_0    conda-forge
    promise                   2.3                      pypi_0    pypi
    protobuf                  3.20.1                   pypi_0    pypi
    psutil                    5.9.4           py310h5764c6d_0    conda-forge
    pthread-stubs             0.4               h36c2ea0_1001    conda-forge
    pulseaudio                16.1                 h126f2b6_0    conda-forge
    py-opencv                 4.6.0           py310hfdc917e_6    conda-forge
    pycparser                 2.21               pyhd3eb1b0_0  
    pyjwt                     2.6.0              pyhd8ed1ab_0    conda-forge
    pyopenssl                 22.0.0             pyhd3eb1b0_0  
    pyparsing                 3.0.9              pyhd8ed1ab_0    conda-forge
    pyrsistent                0.19.2          py310h5764c6d_0    conda-forge
    pysocks                   1.7.1           py310h06a4308_0  
    python                    3.10.8          h4a9ceb5_0_cpython    conda-forge
    python-dateutil           2.8.2              pyhd8ed1ab_0    conda-forge
    python_abi                3.10                    3_cp310    conda-forge
    pytorch                   1.13.0          py3.10_cuda11.6_cudnn8.3.2_0    pytorch
    pytorch-cuda              11.6                 h867d48c_0    pytorch
    pytorch-lightning         1.8.3.post1              pypi_0    pypi
    pytorch-mutex             1.0                        cuda    pytorch
    pytorch-pfn-extras        0.6.3                    pypi_0    pypi
    pytz                      2022.6             pyhd8ed1ab_0    conda-forge
    pyyaml                    6.0             py310h5764c6d_5    conda-forge
    qt-main                   5.15.6               he99da89_3    conda-forge
    readline                  8.2                  h5eee18b_0  
    requests                  2.28.1          py310h06a4308_0  
    requests-oauthlib         1.3.1              pyhd8ed1ab_0    conda-forge
    rfc3339-validator         0.1.4                    pypi_0    pypi
    rfc3987                   1.3.8                    pypi_0    pypi
    s3transfer                0.6.0              pyhd8ed1ab_0    conda-forge
    sentry-sdk                1.11.1                   pypi_0    pypi
    setproctitle              1.3.2                    pypi_0    pypi
    setuptools                65.5.0          py310h06a4308_0  
    shortuuid                 1.0.11                   pypi_0    pypi
    simplejson                3.18.0          py310h5764c6d_0    conda-forge
    six                       1.16.0             pyhd3eb1b0_1  
    sklearn                   0.0.post1                pypi_0    pypi
    smmap                     5.0.0                    pypi_0    pypi
    sqlite                    3.40.0               h5082296_0  
    svt-av1                   1.3.0                h27087fc_0    conda-forge
    swagger-spec-validator    3.0.3              pyhd8ed1ab_0    conda-forge
    sysroot_linux-64          2.12                he073ed8_15    conda-forge
    tensorboardx              2.5.1                    pypi_0    pypi
    termcolor                 2.1.1                    pypi_0    pypi
    terminaltables            3.1.10                   pypi_0    pypi
    tk                        8.6.12               h1ccaba5_0  
    torchaudio                0.13.0              py310_cu116    pytorch
    torchmetrics              0.11.0                   pypi_0    pypi
    torchvision               0.14.0              py310_cu116    pytorch
    tqdm                      4.64.1                   pypi_0    pypi
    typing                    3.10.0.0           pyhd8ed1ab_0    conda-forge
    typing-extensions         4.4.0           py310h06a4308_0  
    typing_extensions         4.4.0           py310h06a4308_0  
    tzdata                    2022g                h04d1e81_0  
    uri-template              1.2.0                    pypi_0    pypi
    urllib3                   1.26.12         py310h06a4308_0  
    wandb                     0.13.5                   pypi_0    pypi
    webcolors                 1.12                     pypi_0    pypi
    webdataset                0.2.31                   pypi_0    pypi
    websocket-client          1.4.2              pyhd8ed1ab_0    conda-forge
    wheel                     0.37.1             pyhd3eb1b0_0  
    x264                      1!164.3095           h166bdaf_2    conda-forge
    x265                      3.5                  h924138e_3    conda-forge
    xcb-util                  0.4.0                h166bdaf_0    conda-forge
    xcb-util-image            0.4.0                h166bdaf_0    conda-forge
    xcb-util-keysyms          0.4.0                h166bdaf_0    conda-forge
    xcb-util-renderutil       0.3.9                h166bdaf_0    conda-forge
    xcb-util-wm               0.4.1                h166bdaf_0    conda-forge
    xorg-fixesproto           5.0               h7f98852_1002    conda-forge
    xorg-inputproto           2.3.2             h7f98852_1002    conda-forge
    xorg-kbproto              1.0.7             h7f98852_1002    conda-forge
    xorg-libice               1.0.10               h7f98852_0    conda-forge
    xorg-libsm                1.2.3             hd9c2040_1000    conda-forge
    xorg-libx11               1.7.2                h7f98852_0    conda-forge
    xorg-libxau               1.0.9                h7f98852_0    conda-forge
    xorg-libxdmcp             1.1.3                h7f98852_0    conda-forge
    xorg-libxext              1.3.4                h7f98852_1    conda-forge
    xorg-libxfixes            5.0.3             h7f98852_1004    conda-forge
    xorg-libxi                1.7.10               h7f98852_0    conda-forge
    xorg-libxrender           0.9.10            h7f98852_1003    conda-forge
    xorg-renderproto          0.11.1            h7f98852_1002    conda-forge
    xorg-xextproto            7.3.0             h7f98852_1002    conda-forge
    xorg-xproto               7.0.31            h7f98852_1007    conda-forge
    xz                        5.2.8                h5eee18b_0  
    yaml                      0.2.5                h7f98852_2    conda-forge
    yarl                      1.8.2                    pypi_0    pypi
    zipp                      3.11.0             pyhd8ed1ab_0    conda-forge
    zlib                      1.2.13               h166bdaf_4    conda-forge
    zstd                      1.5.2                ha4553b6_0  
    
    

    The operating system you're using: linux The output of python --version: python 3.10.8

    Additional Context

    I am in a distributed environment with 2 GPUS, and I am using "ddp_sharded" from PL strategies

    opened by SerezD 6
  • BUG: Incompatible queries for linking artifact tracking and runs

    BUG: Incompatible queries for linking artifact tracking and runs

    Describe the bug

    This is not necessarily a bug, but an issue that does not allow me to take advantage of linked runs to datasets in project metadata and vice versa.

    When you log an artifact to metadata it displays the number of runs using that artifact. You can also go to the dataset registered within a run and it shows the number of runs using that dataset. One issue is that the two views make two possibly incompatible queries to populate the query.

    Reproduction

    Log an artifact to project metadata: project_meta['datasets/some/sub/dir/dataset'].track_files(...) and then I link to the dataset to a run run['dataset'] = project_meta['datasets/some/sub/dir/dataset'].fetch()

    When you navigate to the metadata and look at runs used and click it, you query runs by datasets/some/sub/dir/dataset, which means a run has to have a key datasets/some/sub/dir/dataset, but we just call it dataset so that we don't have to click into the nested structure that is desired in our project metadata tracking. So, it is not possible to track which runs use the artifact from the metadata runs used to link to a query.

    I can always make a manual query, but the link to the query is misleading.

    Expected behavior

    I suppose it would be hard to expect the query to know which key you link the dataset to in the run, which would make generating the query in the runs used link pretty challenging. Nonetheless, I would expect the runs used link in the dataset tracked in meta data to avoid telling me it is used by 0 runs because that would be invalid in this case.

    This is somewhat user error, but also there is an implicit assumption that is not obvious to the user about the structure of which keys are used in the run to link to a tracked artifact. I can always just create a query to find all runs after copy-pasting the hash and make sure I am consistent with what I call "dataset" in the run.

    To solve this, can we simply specify which key we promise to use when linking tracked artifacts in runs? Something like project_meta['datasets/some/sub/dir/dataset'].track_files("s3://...", run_key='training_dataset') and then update the hyperlink to query with training_dataset = <hash>?

    An example of linking the artifact to a run could then just be:

    run['training_dataset'] = project_meta['datasets/some/sub/dir/dataset'].fetch()`
    

    By hyperlink to query I mean the 0 runs hyperlink you see in the screen shot below Screen Shot 2022-11-17 at 11 18 41 AM

    opened by ljstrnadiii 2
  • Feature Request: Different types of graphs (similar to capabilities of matplotlib) - live tracking

    Feature Request: Different types of graphs (similar to capabilities of matplotlib) - live tracking

    Hi, my name is Arseni.

    I am running different ML experiments and my personal pain: I want to monitor the experiments online during the run of a script. I like your organisation and your tools a lot, that is why I wish I could use your product more. But it seems that you are not goint to incorporate some features an time soon that super important to me and maybe important to others as well.

    I would like to plot online not only ONE kind of plots as you offer - lines (!). Only line charts I can plot with you. But I want to be able to plot online MANY types of graphs: 3d plots, plt.imshow style plots, bar plots, scatter plots, pie charts and all those great tools that I see in matplotlib.

    For now, the only good alternative is, as I said, Matplotlib with their strange sollution of doing plt.pause(0.01) once in a while to plot things during the run. I hope you understand what I am talking about.

    You can say: Arseni, stop! We do offer you to upload different types of gfraphs.. But here is the problem: I want them to update online!! NOT to upload them at times to some supplementary folder. I do want the full functionality as your "log" functionality. To see the same graph changing as aresult of the new information comes in - scatter, 3d and others as "log" online.

    That will be the great adsvantage for you.. Still no platform of your compatitors didn't do that. I hope I will able to see that feature soon.

    Thank you.

    feature request 
    opened by Arseni1919 10
Releases(0.16.15)
  • 0.16.15(Dec 13, 2022)

  • 0.16.14(Dec 6, 2022)

  • 0.16.13(Nov 23, 2022)

  • 0.16.12(Nov 7, 2022)

    Changes

    • Building a package with Poetry (#1069)
    • Automatically convert image and html like assignments to uploads (#1006)
    • File.from_stream does not load content into memory (#1065)
    • Move sync and status commands to neptune.new.cli package #1078
    • neptune status - shows trashed containers #1079
    • Drop limits for in-memory Files (#1070)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.11(Oct 27, 2022)

  • 0.16.10(Oct 26, 2022)

    Features

    • Track artifacts on S3 compatible storage (#1053)

    Fixes

    • Update jsonschema requirement with explicit format specifier (#1010)
    • Escape inputs to SQL in Artifact LocalFileHashStorage (#1034)
    • jsonschema requirements unpined and patched related Bravado issue (#1051)
    • Version checking with importlib and versioneer config update (#1048)

    Changes

    • More consistent and strict way of git repository, source files and entrypoint detection (#1007)
    • Moved neptune and neptune_cli to src dir (#1027)
    • fetch_runs_table(...), fetch_models_table(...) and fetch_model_versions_table(...) now queries only non-trashed (#1033)
    • get_last_run, get_run_url, get_project and neptune.init marked as deprecated (#1011)
    • Deprecated implicit casting of objects to strings with log and assign operations (#1028)
    • Internally extracted legacy client to legacy submodule (#1039)
    • Marked legacy client as deprecated (#1047)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.9(Sep 27, 2022)

  • 0.16.8(Sep 23, 2022)

    Features

    • Added support of HuggingFace integration (#948)
    • Implement trash_objects management function(#996)

    Fixes

    • Fixed with_id deprecation message (#1002)
    • Fix passing None as deprecated parameter to deprecated_parameter decorator (#1001)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.7(Sep 7, 2022)

    Features

    • Exposed integrations related utils (#983)
    • Add new with_id parameter to init functions (#985)
    • Introduce filtering columns when fetching run, model and model_version tables (#986)

    Fixes

    • Stop hanging indefinitely on wait when async data synchronization process is dead (#909)
    • Finish stop() faster when async data synchronization process dies (#909)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.6(Aug 30, 2022)

    Features

    • Added support for Prophet integration (https://github.com/neptune-ai/neptune-client/pull/978)
    • Log argparse.Namespace objects as dicts (https://github.com/neptune-ai/neptune-client/pull/984)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.5(Aug 9, 2022)

    Features

    • Added NEPTUNE_MODE environment variable (#928)
    • Added support of Service account management (#927)
    • More informational exception due to plotly and matplotlib incompatibility (#960)
    • Dedicated exceptions for collision and validation errors in create_project() (#965)
    • Project key is now optional in API. If it is not provided by user it is generated. (#946)

    Breaking changes

    • Former ProjectNameCollision exception renamed to AmbiguousProjectName (#965)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.4(Jul 1, 2022)

    Fixes

    • Fix uploading in-memory files lager than 5MB (#924)
    • fetch_extension added to Handler (#923)

    Changes

    • Force jsonschema version < 4.0.0 (#922)

    • Rename and copy update for UnsupportedClientVersion and DeprecatedClientLibraryVersion (#917)

    Source code(tar.gz)
    Source code(zip)
  • 0.16.3(May 31, 2022)

    Features

    • Added fetching Models method to Project (#916)

    Fixes

    • Fix computing of a multipart upload chunk size (#897)
    • Matching all listed tags instead of any when calling fetch_runs_table (#899)
    • Fix invalid processing of delete followed by file upload in a single batch (#880)
    Source code(tar.gz)
    Source code(zip)
  • 0.16.2(May 12, 2022)

  • 0.16.1(Apr 19, 2022)

  • 0.16.0(Apr 12, 2022)

  • 0.15.2(Mar 16, 2022)

  • 0.15.1(Mar 8, 2022)

  • 0.15.0(Mar 8, 2022)

    Features

    • Methods for creating and manipulating Model Registry objects (#794)

    Changes

    • Renamed --run parameter to --object in neptune sync (previous kept as deprecated, #849)
    • More helpful error message on SSL validation problem (#853)
    • Added names to daemon worker threads (#851)
    • Stopped forwarding every attribute from Handler to Attribute (#815)
    Source code(tar.gz)
    Source code(zip)
  • 0.14.3(Jan 31, 2022)

    Features

    • Stripping whitespaces from Neptune API Token (#825)

    Fixes

    • Raise proper exception when invalid token were provided (#825)
    • Make status error-handling in legacy client consistent with neptune.new (#829)
    Source code(tar.gz)
    Source code(zip)
  • 0.14.2(Jan 18, 2022)

    Features

    • Use new file upload API (#789)

    Fixes

    • Fixed listing available workspaces when invalid name was provided (#818)
    • Added proper docstrings for Project-Level Metadata (#812)
    • Fixed backward compatibility when syncing old offline data (#810)
    • Prevent original numpy array from modifying (#821)
    • Unpin jsonschema<4, pin swagger-spec-validator>=2.7.4 until bravado releases new version (#820)
    Source code(tar.gz)
    Source code(zip)
  • 0.14.1(Jan 5, 2022)

  • 0.14.0(Dec 15, 2021)

    neptune-client 0.14.0

    Features

    • Interacting with project-level metadata (#758)
    • Copy feature for non-file single value attributes (#768)

    Fixes

    • Fix verifying data size limits in String Atoms and File.from_content (#784)
    Source code(tar.gz)
    Source code(zip)
  • 0.13.5(Dec 14, 2021)

  • 0.13.4(Dec 9, 2021)

    neptune-client 0.13.4

    Fixes

    • Fix issue that prevented waiting for subprocesses to finish after receiving stop signal from backend (#774); Timeout now overridable using environment var NEPTUNE_SUBPROCESS_KILL_TIMEOUT
    Source code(tar.gz)
    Source code(zip)
  • 0.13.3(Nov 25, 2021)

  • 0.13.2(Nov 24, 2021)

  • 0.13.1(Nov 3, 2021)

  • 0.13.0(Oct 19, 2021)

    Features

    • Provide names of existing run attributes to IPython's suggestion mechanism (#740)
    • Add docstrings for project management API (#738)

    Fixes

    • Update MemberRoles to match values in the UI (#738)
    Source code(tar.gz)
    Source code(zip)
Owner
neptune.ai
Metadata store for MLOps
neptune.ai
List of resources for learning Category Theory

A curated list of resources for studying category theory. As resources aimed at mathematicians are abundant, this list is aimed at materials whose target audience is not people with a graduate-level

Bruno Gavranović 100 Jan 01, 2023
Auto check in via GitHub Actions

因为本人毕业离校,本项目交由在校的@hfut-xyc同学接手,请访问hfut-xyc/hfut_auto_check-in获得最新的脚本 本项目遵从GPLv2协定,Copyright (C) 2021, Fw[a]rd 免责声明 根据GPL协定,我、本项目的作者,不会对您使用这个脚本带来的任何后果

Fw[a]rd 3 Jun 27, 2021
A passive recon suite designed for fetching the information about web application

FREAK Suite designed for passive recon Usage: python3 setup.py python3 freak.py warning This tool will throw error if you doesn't provide valid api ke

toxic v3nom 7 Feb 17, 2022
CalHacks 8 Repo: Megha Jain, Gaurav Bhatnagar, Howard Meng, Vibha Tantry

CalHacks8 CalHacks 8 Repo: Megha Jain, Gaurav Bhatnagar, Howard Meng, Vibha Tantry Setup FE Install React Native via Expo, run App.js. Backend Create

0 Aug 20, 2022
addons to the turtle package that help you drew stuff more quickly

TurtlePlus addons to the turtle package that help you drew stuff more quickly --------------

1 Nov 18, 2021
Test for using pyIIIFpres for rara magnetica project

raramagnetica_pyIIIFpres Test for using pyIIIFpres for rara magnetica project. This test show how to use pyIIIFpres for creating mannifest compliant t

Giacomo Marchioro 1 Dec 03, 2021
LinkML based SPARQL template library and execution engine

sparqlfun LinkML based SPARQL template library and execution engine modularized core library of SPARQL templates generic templates using common vocabs

Linked data Modeling Language 6 Oct 10, 2022
Unofficial Valorant documentation and tools for third party developers

Valorant Third Party Toolkit This repository contains unofficial Valorant documentation and tools for third party developers. Our goal is to centraliz

Noah Kim 20 Dec 21, 2022
Store Simulation

Almacenes Para clonar el Repositorio: Vaya a la terminal de Linux o Mac, o a la cmd en Windows y ejecute:

Johan Posada 1 Nov 12, 2021
Data-driven Computer Science UoB

COMS20011_2021 Data-driven Computer Science UoB Staff Laurence Aitchison [ 6 May 16, 2022

Lookup for interesting stuff in SMB shares

SMBSR - what is that? Well, SMBSR is a python script which given a CIDR/IP/IP_file/HOSTNAME(s) enumerates all the SMB services listening (445) among t

Vincenzo 112 Dec 15, 2022
Mdisk - 🚧 On Construction 🚧

Mdisk Install For Package pip install mdisk pip install git+https://github.com/HeimanPictures/Mdisk.git Usage You can use this as python module or via

AkKiL 6 Aug 08, 2022
The learning agent learns firstly approaching to the football and then kicking the football to the target position

Football Court This project utilized Pytorch and Tensorflow so that the learning agent learns firstly approaching to the football and then kicking the

1 Nov 19, 2021
TriOTP, the OTP framework for Python Trio

TriOTP, the OTP framework for Python Trio See documentation for more informations. Introduction This project is a simplified implementation of the Erl

David Delassus 7 Nov 21, 2022
Скрипт позволяет заводить задачи в Панель мониторинга YouTrack на основе парсинга сайта safe-surf.ru

Скрипт позволяет заводить задачи в Панель мониторинга YouTrack на основе парсинга сайта safe-surf.ru

Bad_karma 3 Feb 12, 2022
Extra scripts to improve user experience related to OpenTaiko

OpenTaiko-Utils Extra scripts to improve user experience related to OpenTaiko osu2tja /!\ IMPORTANT NOTE /!\ Converted charts that aren't yours are fo

2 Dec 25, 2022
Transform your boring distro into a hacking powerhouse.

Pentizer Transform your boring distro into a hacking powerhouse. Pentizer is a personal project that imports Kali and Parrot repositories in any Debia

Michail Tsimpliarakis 2 Nov 05, 2021
Persian Kaldi profile for Rhasspy built from open speech data

Persian Kaldi Profile A Rhasspy profile for Persian (fa). Installation Get started by first installing Vosk: # Create virtual environment python3 -m v

Rhasspy 12 Aug 08, 2022
an elegant datasets factory

rawbuilder an elegant datasets factory Free software: MIT license Documentation: https://rawbuilder.readthedocs.io. Features Schema oriented datasets

Mina Farag 7 Nov 12, 2022
A bot to use in a pump & dump event

A bot to use in a pump & dump event on Binance.com. Please note the bot is in heavy devleopment currently so be aware of errors. If you experience err

Freddie Jonas 189 Dec 24, 2022