Code to reproduce experiments in the paper "Task-Oriented Dialogue as Dataflow Synthesis" (TACL 2020).

Overview

Task-Oriented Dialogue as Dataflow Synthesis

License: MIT

This repository contains tools and instructions for reproducing the experiments in the paper Task-Oriented Dialogue as Dataflow Synthesis (TACL 2020). If you use any source code or data included in this toolkit in your work, please cite the following paper.

@article{SMDataflow2020,
  author = {{Semantic Machines} and Andreas, Jacob and Bufe, John and Burkett, David and Chen, Charles and Clausman, Josh and Crawford, Jean and Crim, Kate and DeLoach, Jordan and Dorner, Leah and Eisner, Jason and Fang, Hao and Guo, Alan and Hall, David and Hayes, Kristin and Hill, Kellie and Ho, Diana and Iwaszuk, Wendy and Jha, Smriti and Klein, Dan and Krishnamurthy, Jayant and Lanman, Theo and Liang, Percy and Lin, Christopher H. and Lintsbakh, Ilya and McGovern, Andy and Nisnevich, Aleksandr and Pauls, Adam and Petters, Dmitrij and Read, Brent and Roth, Dan and Roy, Subhro and Rusak, Jesse and Short, Beth and Slomin, Div and Snyder, Ben and Striplin, Stephon and Su, Yu and Tellman, Zachary and Thomson, Sam and Vorobev, Andrei and Witoszko, Izabela and Wolfe, Jason and Wray, Abby and Zhang, Yuchen and Zotov, Alexander},
  title = {Task-Oriented Dialogue as Dataflow Synthesis},
  journal = {Transactions of the Association for Computational Linguistics},
  volume = {8},
  pages = {556--571},
  year = {2020},
  month = sep,
  url = {https://doi.org/10.1162/tacl_a_00333},
  abstract = {We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph. A dialogue agent maps each user utterance to a program that extends this graph. Programs include metacomputation operators for reference and revision that reuse dataflow fragments from previous turns. Our graph-based state enables the expression and manipulation of complex user intents, and explicit metacomputation makes these intents easier for learned models to predict. We introduce a new dataset, SMCalFlow, featuring complex dialogues about events, weather, places, and people. Experiments show that dataflow graphs and metacomputation substantially improve representability and predictability in these natural dialogues. Additional experiments on the MultiWOZ dataset show that our dataflow representation enables an otherwise off-the-shelf sequence-to-sequence model to match the best existing task-specific state tracking model. The SMCalFlow dataset, code for replicating experiments, and a public leaderboard are available at \url{https://www.microsoft.com/en-us/research/project/dataflow-based-dialogue-semantic-machines}.},
}

Understand SMCalFlow Programs

Please read this document to understand the syntax of SMCalFlow programs, and read this document to understand their semantics.

Install

# (Recommended) Create a virtual environment
virtualenv --python=python3 env
source env/bin/activate

# Install the sm-dataflow package and its core dependencies
pip install git+https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis.git

# Download the spaCy model for tokenization
python -m spacy download en_core_web_md-2.2.0 --direct

# Install OpenNMT-py and PyTorch for training and running the models
pip install OpenNMT-py==1.0.0 torch==1.4.0
  • Our experiments used OpenNMT-py 1.0.0 with PyTorch 1.4.0. Other versions are not tested. You can skip these two packages if you don't need to train or run the models.

SMCalFlow Experiments

Follow the steps below to reproduce the results reported in the paper (Table 2).

NOTE: We highly recommend following the instructions for the leaderboard to report your results for consistency. If you use your own evaluation script, please pay attention to the notes in Step 2 and Step 7.

  1. Download and unzip the SMCalFlow 1.0 dataset.

    dataflow_dialogues_dir="output/dataflow_dialogues"
    mkdir -p "${dataflow_dialogues_dir}"
    
    cd "${dataflow_dialogues_dir}"
    # Download the dataset `smcalflow.full.data.tgz` or `smcalflow.inlined.data.tgz`
    # The `PATH_TO_DATA_TGZ` is the path to the tgz file of the corresponding dataset.
    tar -xvzf PATH_TO_DATA_TGZ
  2. Compute data statistics:

    dataflow_dialogues_stats_dir="output/dataflow_dialogues_stats"
    mkdir -p "${dataflow_dialogues_stats_dir}"
    python -m dataflow.analysis.compute_data_statistics \
        --dataflow_dialogues_dir ${dataflow_dialogues_dir} \
        --subset train valid \
        --outdir ${dataflow_dialogues_stats_dir}
    • Basic statistics

      num_dialogues num_turns num_kept_turns num_skipped_turns num_refer_turns num_revise_turns
      train 32,647 133,821 121,200 12,621 33,011 9,315
      valid 3,649 14,757 13,499 1,258 3,544 1,052
      test 5,211 22,012 21,224 7,88 8,965 3,315
      all 41,517 170,590 155,923 14,667 45,520 13,682
      • We currently do not release the test set, but we report the data statistics here.
      • NOTE: There are a small number of turns (num_skipped_turns in the table) whose sole purpose is to establish dialogue context and should not be directly trained or tested on. The dataset statistics reported in the paper are based on non-skipped turns only.
  3. Prepare text data for the OpenNMT toolkit.

    onmt_text_data_dir="output/onmt_text_data"
    mkdir -p "${onmt_text_data_dir}"
    for subset in "train" "valid"; do
        python -m dataflow.onmt_helpers.create_onmt_text_data \
            --dialogues_jsonl ${dataflow_dialogues_dir}/${subset}.dataflow_dialogues.jsonl \
            --num_context_turns 2 \
            --include_program \
            --include_described_entities \
            --onmt_text_data_outbase ${onmt_text_data_dir}/${subset}
    done
    • We use --include_program to add the gold program of the context turns.
    • We use --include_described_entities to add the entities (e.g., [email protected]) described in the generation outcome for the context turns. These entities mentioned in the context turns can appear in the "inlined" programs for the current turn, and thus, we include them in the source sequence so that the seq2seq model can produce such tokens via a copy mechanism.
    • You can vary the number of context turns by changing --num_context_turns.
  4. Compute statistics for the created OpenNMT text data.

    onmt_data_stats_dir="output/onmt_data_stats"
    mkdir -p "${onmt_data_stats_dir}"
    python -m dataflow.onmt_helpers.compute_onmt_data_stats \
        --text_data_dir ${onmt_text_data_dir} \
        --suffix src src_tok tgt \
        --subset train valid \
        --outdir ${onmt_data_stats_dir}
  5. Train OpenNMT models. You can also skip this step and instead download the trained model from the table below.

    onmt_binarized_data_dir="output/onmt_binarized_data"
    mkdir -p "${onmt_binarized_data_dir}"
    
    src_tok_max_ntokens=$(jq '."100"' ${onmt_data_stats_dir}/train.src_tok.ntokens_stats.json)
    tgt_max_ntokens=$(jq '."100"' ${onmt_data_stats_dir}/train.tgt.ntokens_stats.json)
    
    # create OpenNMT binarized data
    onmt_preprocess \
        --dynamic_dict \
        --train_src ${onmt_text_data_dir}/train.src_tok \
        --train_tgt ${onmt_text_data_dir}/train.tgt \
        --valid_src ${onmt_text_data_dir}/valid.src_tok \
        --valid_tgt ${onmt_text_data_dir}/valid.tgt \
        --src_seq_length ${src_tok_max_ntokens} \
        --tgt_seq_length ${tgt_max_ntokens} \
        --src_words_min_frequency 0 \
        --tgt_words_min_frequency 0 \
        --save_data ${onmt_binarized_data_dir}/data
    
    # extract pretrained Glove 840B embeddings (https://nlp.stanford.edu/projects/glove/)
    glove_840b_dir="output/glove_840b"
    mkdir -p "${glove_840b_dir}"
    wget -O ${glove_840b_dir}/glove.840B.300d.zip http://nlp.stanford.edu/data/glove.840B.300d.zip
    unzip ${glove_840b_dir}/glove.840B.300d.zip -d ${glove_840b_dir}
    
    onmt_embeddings_dir="output/onmt_embeddings"
    mkdir -p "${onmt_embeddings_dir}"
    python -m dataflow.onmt_helpers.embeddings_to_torch \
        -emb_file_both ${glove_840b_dir}/glove.840B.300d.txt \
        -dict_file ${onmt_binarized_data_dir}/data.vocab.pt \
        -output_file ${onmt_embeddings_dir}/embeddings
    
    # train OpenNMT models
    onmt_models_dir="output/onmt_models"
    mkdir -p "${onmt_models_dir}"
    
    batch_size=64
    train_num_datapoints=$(jq '.train' ${onmt_data_stats_dir}/nexamples.json)
    # validate approximately at each epoch
    valid_steps=$(python3 -c "from math import ceil; print(ceil(${train_num_datapoints}/${batch_size}))")
    
    onmt_train \
        --encoder_type brnn \
        --decoder_type rnn \
        --rnn_type LSTM \
        --global_attention general \
        --global_attention_function softmax \
        --generator_function softmax \
        --copy_attn_type general \
        --copy_attn \
        --seed 1 \
        --optim adam \
        --learning_rate 0.001 \
        --early_stopping 2 \
        --batch_size ${batch_size} \
        --valid_batch_size 8 \
        --valid_steps ${valid_steps} \
        --save_checkpoint_steps ${valid_steps} \
        --data ${onmt_binarized_data_dir}/data \
        --pre_word_vecs_enc ${onmt_embeddings_dir}/embeddings.enc.pt \
        --pre_word_vecs_dec ${onmt_embeddings_dir}/embeddings.dec.pt \
        --word_vec_size 300 \
        --attention_dropout 0 \
        --dropout 0.5 \
        --layers ??? \
        --rnn_size ??? \
        --gpu_ranks 0 \
        --world_size 1 \
        --save_model ${onmt_models_dir}/checkpoint 
    • Hyperparameters for models reported in the Table 2 in the paper.

      --layers --rnn_size model
      dataflow 2 384 link
      inline 3 384 link
  6. Make predictions using a trained OpenNMT model. You need to replace the checkpoint_last.pt in the following script with the final model you get from the previous step.

    onmt_translate_outdir="output/onmt_translate_output"
    mkdir -p "${onmt_translate_outdir}"
    
    onmt_model_pt="${onmt_models_dir}/checkpoint_last.pt"
    nbest=5
    tgt_max_ntokens=$(jq '."100"' ${onmt_data_stats_dir}/train.tgt.ntokens_stats.json)
    
    # predict programs using a trained OpenNMT model
    onmt_translate \
        --model ${onmt_model_pt} \
        --max_length ${tgt_max_ntokens} \
        --src ${onmt_text_data_dir}/valid.src_tok \
        --replace_unk \
        --n_best ${nbest} \
        --batch_size 8 \
        --beam_size 10 \
        --gpu 0 \
        --report_time \
        --output ${onmt_translate_outdir}/valid.nbest
  7. Compute the exact-match accuracy (taking into account whether the program_execution_oracle.refer_are_correct is true).

    evaluation_outdir="output/evaluation_output"
    mkdir -p "${evaluation_outdir}"
    
    # create the prediction report
    python -m dataflow.onmt_helpers.create_onmt_prediction_report \
        --dialogues_jsonl ${dataflow_dialogues_dir}/valid.dataflow_dialogues.jsonl \
        --datum_id_jsonl ${onmt_text_data_dir}/valid.datum_id \
        --src_txt ${onmt_text_data_dir}/valid.src_tok \
        --ref_txt ${onmt_text_data_dir}/valid.tgt \
        --nbest_txt ${onmt_translate_outdir}/valid.nbest \
        --nbest ${nbest} \
        --outbase ${evaluation_outdir}/valid
    
    # evaluate the predictions (all turns)
    python -m dataflow.onmt_helpers.evaluate_onmt_predictions \
        --prediction_report_tsv ${evaluation_outdir}/valid.prediction_report.tsv \
        --scores_json ${evaluation_outdir}/valid.all.scores.json
    
    # evaluate the predictions (refer turns)
    python -m dataflow.onmt_helpers.evaluate_onmt_predictions \
        --prediction_report_tsv ${evaluation_outdir}/valid.prediction_report.tsv \
        --datum_ids_json ${dataflow_dialogues_stats_dir}/valid.refer_turn_ids.jsonl \
        --scores_json ${evaluation_outdir}/valid.refer_turns.scores.json
    
    # evaluate the predictions (revise turns)
    python -m dataflow.onmt_helpers.evaluate_onmt_predictions \
        --prediction_report_tsv ${evaluation_outdir}/valid.prediction_report.tsv \
        --datum_ids_json ${dataflow_dialogues_stats_dir}/valid.revise_turn_ids.jsonl \
        --scores_json ${evaluation_outdir}/valid.revise_turns.scores.json
    • NOTE: The numbers reported using the scripts above should match those reported in Table 2 in the paper. The leaderboard has used a slightly different evaluation script that canonicalizes both the gold and predicted programs, and thus, the accuracy would be slightly higher (e.g., 0.665 vs. 0.668 on the test set). To obtain the leaderboard results, please add --use_leaderboard_metric when running python -m dataflow.onmt_helpers.create_onmt_prediction_report to create the report.
  8. Calculate the statistical significance for two different experiments.

    analysis_outdir="output/analysis_output"
    mkdir -p "${analysis_outdir}"
    python -m dataflow.analysis.calculate_statistical_significance \
        --exp0_prediction_report_tsv ${exp0_evaluation_outdir}/valid.prediction_report.tsv \
        --exp1_prediction_report_tsv ${exp1_evaluation_outdir}/valid.prediction_report.tsv \
        --scores_json ${analysis_outdir}/exp0_vs_exp1.valid.scores.json
    • The exp0_evaluation_outdir and exp1_evaluation_outdir are the evaluation_outdir in Step 7 for corresponding experiments.
    • You can also provide --datum_ids_jsonl to carry out the significance test on a subset of turns.

MultiWOZ Experiments

  1. Download the MultiWoZ dataset and convert it to dataflow programs.

    # creates TRADE-processed dialogues
    raw_trade_dialogues_dir="output/trade_dialogues"
    mkdir -p "${raw_trade_dialogues_dir}"
    python -m dataflow.multiwoz.trade_dst.create_data \
        --use_multiwoz_2_1 \
        --output_dir ${raw_trade_dialogues_dir}
    
    # patch TRADE dialogues
    patched_trade_dialogues_dir="output/patched_trade_dialogues"
    mkdir -p "${patched_trade_dialogues_dir}"
    for subset in "train" "dev" "test"; do
        python -m dataflow.multiwoz.patch_trade_dialogues \
            --trade_data_file ${raw_trade_dialogues_dir}/${subset}_dials.json \
            --outbase ${patched_trade_dialogues_dir}/${subset}
    done
    ln -sr ${patched_trade_dialogues_dir}/dev_dials.json ${patched_trade_dialogues_dir}/valid_dials.json
    
    # create dataflow programs
    dataflow_dialogues_dir="output/dataflow_dialogues"
    mkdir -p "${dataflow_dialogues_dir}"
    for subset in "train" "valid" "test"; do
        python -m dataflow.multiwoz.create_programs \
            --trade_data_file ${patched_trade_dialogues_dir}/${subset}_dials.json \
            --outbase ${dataflow_dialogues_dir}/${subset}
    done
    • To create programs that inline refer calls, add --no_refer when running the dataflow.multiwoz.create_programs command.
    • To create programs that inline both refer and revise calls, add --no_refer --no_revise.
  2. Prepare text data for the OpenNMT toolkit.

    onmt_text_data_dir="output/onmt_text_data"
    mkdir -p "${onmt_text_data_dir}"
    for subset in "train" "valid" "test"; do
        python -m dataflow.onmt_helpers.create_onmt_text_data \
            --dialogues_jsonl ${dataflow_dialogues_dir}/${subset}.dataflow_dialogues.jsonl \
            --num_context_turns 2 \
            --include_agent_utterance \
            --onmt_text_data_outbase ${onmt_text_data_dir}/${subset}
    done
    • We use --include_agent_utterance following the setup in TRADE (Wu et al., 2019).
    • You can vary the number of context turns by changing --num_context_turns.
  3. Compute statistics for the created OpenNMT text data.

    onmt_data_stats_dir="output/onmt_data_stats"
    mkdir -p "${onmt_data_stats_dir}"
    python -m dataflow.onmt_helpers.compute_onmt_data_stats \
        --text_data_dir ${onmt_text_data_dir} \
        --suffix src src_tok tgt \
        --subset train valid test \
        --outdir ${onmt_data_stats_dir}
  4. Train OpenNMT models. You can also skip this step and instead download the trained models from the table below.

    onmt_binarized_data_dir="output/onmt_binarized_data"
    mkdir -p "${onmt_binarized_data_dir}"
    
    # create OpenNMT binarized data
    src_tok_max_ntokens=$(jq '."100"' ${onmt_data_stats_dir}/train.src_tok.ntokens_stats.json)
    tgt_max_ntokens=$(jq '."100"' ${onmt_data_stats_dir}/train.tgt.ntokens_stats.json)
    
    onmt_preprocess \
        --dynamic_dict \
        --train_src ${onmt_text_data_dir}/train.src_tok \
        --train_tgt ${onmt_text_data_dir}/train.tgt \
        --valid_src ${onmt_text_data_dir}/valid.src_tok \
        --valid_tgt ${onmt_text_data_dir}/valid.tgt \
        --src_seq_length ${src_tok_max_ntokens} \
        --tgt_seq_length ${tgt_max_ntokens} \
        --src_words_min_frequency 0 \
        --tgt_words_min_frequency 0 \
        --save_data ${onmt_binarized_data_dir}/data
    
    # extract pretrained Glove 6B embeddings
    glove_6b_dir="output/glove_6b"
    mkdir -p "${glove_6b_dir}"
    wget -O ${glove_6b_dir}/glove.6B.zip http://nlp.stanford.edu/data/glove.6B.zip
    unzip ${glove_6b_dir}/glove.6B.zip -d ${glove_6b_dir}
    
    onmt_embeddings_dir="output/onmt_embeddings"
    mkdir -p "${onmt_embeddings_dir}"
    python -m dataflow.onmt_helpers.embeddings_to_torch \
        -emb_file_both ${glove_6b_dir}/glove.6B.300d.txt \
        -dict_file ${onmt_binarized_data_dir}/data.vocab.pt \
        -output_file ${onmt_embeddings_dir}/embeddings
    
    # train OpenNMT models
    onmt_models_dir="output/onmt_models"
    mkdir -p "${onmt_models_dir}"
    
    batch_size=64
    train_num_datapoints=$(jq '.train' ${onmt_data_stats_dir}/nexamples.json)
    # approximately validate at each epoch
    valid_steps=$(python3 -c "from math import ceil; print(ceil(${train_num_datapoints}/${batch_size}))")
    
    onmt_train \
        --encoder_type brnn \
        --decoder_type rnn \
        --rnn_type LSTM \
        --global_attention general \
        --global_attention_function softmax \
        --generator_function softmax \
        --copy_attn_type general \
        --copy_attn \
        --seed 1 \
        --optim adam \
        --learning_rate 0.001 \
        --early_stopping 2 \
        --batch_size ${batch_size} \
        --valid_batch_size 8 \
        --valid_steps ${valid_steps} \
        --save_checkpoint_steps ${valid_steps} \
        --data ${onmt_binarized_data_dir}/data \
        --pre_word_vecs_enc ${onmt_embeddings_dir}/embeddings.enc.pt \
        --pre_word_vecs_dec ${onmt_embeddings_dir}/embeddings.dec.pt \
        --word_vec_size 300 \
        --attention_dropout 0 \
        --dropout ??? \
        --layers ??? \
        --rnn_size ??? \
        --gpu_ranks 0 \
        --world_size 1 \
        --save_model ${onmt_models_dir}/checkpoint 
    • Hyperparameters for models reported in the Table 3 in the paper.

      --dropout --layers --rnn_size model
      dataflow (--num_context_turns 2) 0.7 2 384 link
      inline refer (--num_context_turns 4) 0.3 3 320 link
      inline both (--num_context_turns 10) 0.7 2 320 link
  5. Make predictions using a trained OpenNMT model. You need to replace the checkpoint_last.pt in the following script with the actual model you get from the previous step.

    onmt_translate_outdir="output/onmt_translate_output"
    mkdir -p "${onmt_translate_outdir}"
    
    onmt_model_pt="${onmt_models_dir}/checkpoint_last.pt"
    nbest=5
    tgt_max_ntokens=$(jq '."100"' ${onmt_data_stats_dir}/train.tgt.ntokens_stats.json)
    
    # predict programs on the test set using a trained OpenNMT model
    onmt_translate \
        --model ${onmt_model_pt} \
        --max_length ${tgt_max_ntokens} \
        --src ${onmt_text_data_dir}/test.src_tok \
        --replace_unk \
        --n_best ${nbest} \
        --batch_size 8 \
        --beam_size 10 \
        --gpu 0 \
        --report_time \
        --output ${onmt_translate_outdir}/test.nbest
  6. Compute the exact-match accuracy of the program predictions.

    evaluation_outdir="output/evaluation_output"
    mkdir -p "${evaluation_outdir}"
    
    # create the prediction report
    python -m dataflow.onmt_helpers.create_onmt_prediction_report \
        --dialogues_jsonl ${dataflow_dialogues_dir}/test.dataflow_dialogues.jsonl \
        --datum_id_jsonl ${onmt_text_data_dir}/test.datum_id \
        --src_txt ${onmt_text_data_dir}/test.src_tok \
        --ref_txt ${onmt_text_data_dir}/test.tgt \
        --nbest_txt ${onmt_translate_outdir}/test.nbest \
        --nbest ${nbest} \
        --outbase ${evaluation_outdir}/test
    
    # evaluate the predictions
    python -m dataflow.onmt_helpers.evaluate_onmt_predictions \
        --prediction_report_tsv ${evaluation_outdir}/test.prediction_report.tsv \
        --scores_json ${evaluation_outdir}/test.scores.json
    
  7. Evaluate the belief state predictions.

    belief_state_tracker_eval_dir="output/belief_state_tracker_eval"
    mkdir -p "${belief_state_tracker_eval_dir}"
    
    # creates the gold file from TRADE-preprocessed dialogues (after patch)
    python -m dataflow.multiwoz.create_belief_state_tracker_data \
        --trade_data_file ${patched_trade_dialogues_dir}/test_dials.json \
        --belief_state_tracker_data_file ${belief_state_tracker_eval_dir}/test.belief_state_tracker_data.jsonl
    
    # creates the hypo file from predicted programs
    python -m dataflow.multiwoz.execute_programs \
        --dialogues_file ${evaluation_outdir}/test.dataflow_dialogues.jsonl \
        --cheating_mode never \
        --outbase ${belief_state_tracker_eval_dir}/test.hypo
    
    python -m dataflow.multiwoz.create_belief_state_prediction_report \
        --input_data_file ${belief_state_tracker_eval_dir}/test.hypo.execution_results.jsonl \
        --format dataflow \
        --remove_none \
        --gold_data_file ${belief_state_tracker_eval_dir}/test.belief_state_tracker_data.jsonl \
        --outbase ${belief_state_tracker_eval_dir}/test
    
    # evaluates belief state predictions
    python -m dataflow.multiwoz.evaluate_belief_state_predictions \
        --prediction_report_jsonl ${belief_state_tracker_eval_dir}/test.prediction_report.jsonl \
        --outbase ${belief_state_tracker_eval_dir}/test
    • The scores are reported in ${belief_state_tracker_eval_dir}/test.scores.json.
  8. Calculate the statistical significance for two different experiments.

    analysis_outdir="output/analysis_output"
    mkdir -p "${analysis_outdir}"
    python -m dataflow.analysis.calculate_statistical_significance \
        --exp0_prediction_report_tsv ${exp0_evaluation_outdir}/test.prediction_report.tsv \
        --exp1_prediction_report_tsv ${exp1_evaluation_outdir}/test.prediction_report.tsv \
        --scores_json ${analysis_outdir}/exp0_vs_exp1.test.scores.json
    • The exp0_evaluation_outdir and exp1_evaluation_outdir are the belief_state_tracker_eval_dir in Step 7 for corresponding experiments.
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

80 Dec 13, 2022
A python application for manipulating pandas data frames from the comfort of your web browser

A python application for manipulating pandas data frames from the comfort of your web browser. Data flows are represented as a Directed Acyclic Graph, and nodes can be ran individually as the user se

Schlerp 161 Jan 04, 2023
Jinja is a fast, expressive, extensible templating engine.

Jinja is a fast, expressive, extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax.

The Pallets Projects 9k Jan 04, 2023
Code to reproduce experiments in the paper "Task-Oriented Dialogue as Dataflow Synthesis" (TACL 2020).

Code to reproduce experiments in the paper "Task-Oriented Dialogue as Dataflow Synthesis" (TACL 2020).

Microsoft 274 Dec 28, 2022
Firebase Admin Console is a centralized platform for easy viewing and maintenance of Firestore database, the back-end API is a Python Flask app.

Firebase Admin Console is a centralized platform for easy viewing and maintenance of Firestore database, the back-end API is a Python Flask app. A starting template for developers to customize, build

Daqi Chen 1 Sep 10, 2022
Django Semantic UI admin theme

Django Semantic UI admin theme A completely free (MIT) Semantic UI admin theme for Django. Actually, this is my 3rd admin theme for Django. The first

Alex 69 Dec 28, 2022
fastapi-admin is a fast admin dashboard based on FastAPI and TortoiseORM with tabler ui, inspired by Django admin.

fastapi-admin is a fast admin dashboard based on FastAPI and TortoiseORM with tabler ui, inspired by Django admin.

fastapi-admin 1.6k Dec 30, 2022
Freqtrade is a free and open source crypto trading bot written in Python

Freqtrade is a free and open source crypto trading bot written in Python. It is designed to support all major exchanges and be controlled via Telegram. It contains backtesting, plotting and money man

20.2k Jan 02, 2023
django-admin fixture generator command

Mockango for short mockango is django fixture generator command which help you have data without pain for test development requirements pip install dj

Ilia Rastkhadiv 14 Oct 29, 2022
Tornadmin is an admin site generation framework for Tornado web server.

Tornadmin is an admin site generation framework for Tornado web server.

Bharat Chauhan 0 Jan 10, 2022
Material Design for Django

Django Material Material design for Django. Django-Material 1.7.x compatible with Django 1.11/2.0/2.1/2.2/3.0/3.1 Django-Material 1.6.x compatible wit

Viewflow 2.5k Jan 01, 2023
A Django app that creates automatic web UIs for Python scripts.

Wooey is a simple web interface to run command line Python scripts. Think of it as an easy way to get your scripts up on the web for routine data anal

Wooey 1.9k Jan 01, 2023
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

74 Dec 03, 2022
Python Crypto Bot

Python Crypto Bot

Michael Whittle 1.6k Jan 06, 2023
Real-time monitor and web admin for Celery distributed task queue

Flower Flower is a web based tool for monitoring and administrating Celery clusters. Features Real-time monitoring using Celery Events Task progress a

Mher Movsisyan 5.5k Dec 28, 2022
Awesome Video Datasets

Awesome Video Datasets

Yunhua Zhang 462 Jan 02, 2023
Python code for "Machine learning: a probabilistic perspective" (2nd edition)

Python code for "Machine learning: a probabilistic perspective" (2nd edition)

Probabilistic machine learning 5.3k Dec 31, 2022
A configurable set of panels that display various debug information about the current request/response.

Django Debug Toolbar The Django Debug Toolbar is a configurable set of panels that display various debug information about the current request/respons

Jazzband 7.3k Dec 31, 2022
WordPress look and feel for Django administration panel

Django WP Admin WordPress look and feel for Django administration panel. Features WordPress look and feel New styles for selector, calendar and timepi

Maciej Marczewski 266 Nov 21, 2022
手部21个关键点检测,二维手势姿态,手势识别,pytorch,handpose

手部21个关键点检测,二维手势姿态,手势识别,pytorch,handpose

Eric.Lee 321 Dec 30, 2022