Crypto Stats and Tweets Data Pipeline using Airflow

Overview

Crypto Stats and Tweets Data Pipeline using Airflow

Introduction

Project Overview

This project was brought upon through Udacity's nanodegree program.

For the capstone project within the nanodegree, the ultimate goal is to build a data pipeline that uses the technologies and applications covered in the the program.

With the recent rise of crypto currency interests and the evolution of crypto twitter into the media spotlight, revolving my capstone project around these two areas seemed like a good idea.

The ultimate goal of this project is to create both crypto statistics and crypto tweets datasets that can be used in downstream applications.

That goal was accomplished through this project. However, I have further goals for this project, which will be discussed later.

Project Requirements

At least 2 data sources

  • twitter.com accessed through snscrape tweets libary
  • coingecko public API resulting in crypto currency statistical data starting in 2015.

More than 1 million lines of data.

  • The snscrape_tweets_hist dataset has over 1.5 million rows
  • The coin_stats_hist has over 250k rows.

At least two data sources/formats (csv, api, json)

  • Stored in S3 (mkgpublic)
    • mkgpublic/capstone/tweets/tweets.parquet
    • mkgpublic/capstone/crypto/cg_hourly.csv

Data Ingestion Process

Tweets

The original data ingestion process ran into few snafus. As I decided to use the twitter API to get the tweets side of the data at first; however, due to limitations within the twitter API, I couldn't get more than 1000 tweets per call.

Thus, I decided to use the snscrape tweets python library instead, which provided a much easier method to get a ton of tweets in a reasonable amount of time.

Through using the snscrape tweets python library, the tweets were gathered running a library function.

The tweets were than stored in a MongoDB database as an intermediary storage solution.

Data was continuously ingested using this process until enough tweets about various crypto currencies was gathered.

After storing the tweets in MongoDB the tweets were then pulled from the MongoDB database, stored in a pandas dataframe and written to the mkgpublic s3 bucket as a parquet file.

Crypto

Using the coingecko api, crypto currency statistical data was pulled and stored in a pandas dataframe.

After storing the data in the pandas df, the data was written to the MongoDB database used for tweets.

Data is continously ingested through this process until enough statistical data about various crypto currencies was stored.

Finally the crypto currency statistical data is pulled from the MongoDB database, stored in a pandas dataframe and written to the mkgpublic s3 bucket as a CSV. *** Note *** I stored the data as a CSV because two sets of data formats were requested. I originally choose to store the crypto stats data as a json file, but even when partitioning the file into several JSON files, the files were too big for airflow to handle. Thus, I went with the csv format.

Crypto Stats and Tweets ELT

Now we get into the udacity capstone data ingestion and processing part of this project.

Ultimately, I choose to follow a similar process to what is in the mkg_airflow repository where I am using airflow to run a sequence of tasks.

Main Scripts

  • dags/tweets_and_crypto_etl.py
  • plugins/helpers/sql_queries.py
  • plugins/operators/stage_redshift.py
  • plugins/operators/load_dimension.py
  • plugins/operators/load_fact.py
  • plugins/helpers/analysis.py
  • plugins/operators/data_quality.py

Data Model

Udacity Capstone Project Data Model
  1. Data is loaded into the staging tables cg_coin_list_stg, snscrape_tweets_stg, and cg_hourly_stg on a Redshift Cluster from the S3 bucket
  2. Date information is loaded into Date Dim
  3. Data is loaded into the cg_coin_list table from cg_coin_list_stg
  4. Data is loaded into coin_stats_hist using a join between date_dim, cg_hourly_stg, and cg_coin_list using date_keys and coin names as parameters to get foreign key allocation
  5. Data is loaded into snscrape_tweets_hist using a join between date_dim, snscrape_tweets_stg and cg_coin_list using date_keys and coin names as parameters to get foreign key allocation

Ultimately, this data model was chosen as the end state will be combining crypto price action with tweet sentiment to determine how the market reacts to price action. So, we need a relationship between the crypto and tweets datasets in order to one day achieve this future state result.

Steps

Airflow Udacity Capstone Dag
  1. Create Redshift Cluster
  2. Create Crypto, Tweets, and Dim Schemas
  3. Create Crypto/Tweets staging and Dim Tables
  4. Staging
  5. Stage Coingecko Token List Mapping Table
  6. Stage Coingecko hourly crypto currency statistical table
  7. Stage snscrape tweets crypto twitter table
  8. Load Dimensions
  9. Load Coingecko Token List Mapping Table
  10. Load Date Dim with date information from Coingecko hourly crypto currency statistical staging table
  11. Load Date Dim with date information from Stage snscrape tweets crypto twitter staging table
  12. Create Fact Tables
  13. Load Fact Tables
  14. Load crypto currency statistics history table
  15. Load snscrape tweets history table
  16. Run Data Quality Checks
  17. Select Statements that make sure data is actually present
  18. Build an Aggregate table with min statistic and max statistic values per month from the coin_stats_hist table
  19. Store resulting dim, fact and aggregate tables in S3
  20. Delete Redshift Cluster

Future Work and Final Thoughts

Some questions for future work:

  • What if the data was increased by 100x.
    • I would use a spark emr cluster to process the data as that would speed up both the data ingestion and the processing parts of the project.
    • This is likely going to happen in my future steps for this project, so ultimately this will be added in future versions.
  • What if the pipelines would be run on a daily basis by 7 am every day.
    • I need a way to get the first part of this process easier. The issue is sometimes either the coingecko or the snscrape tweets api breaks. Thus, if this pipeline would need to be run every day at 7am I would need to fix the initial data ingestion into my S3 bucket, as in, making the process more automated.
    • Nonetheless, if we are just referring to the S3-->Redshift-->S3 part of the process, then I would set airflow to run the current elt process daily as the initial api --> MongoDB --> S3 part of the process would be taken care of.
    • I would also need to add in an extra step so that the pipeline combines the data that is previously stored in the S3 bucket with the new data added.
  • What if the database needed to be accessed by 100+ people.
    • If the database needs to be accessed by 100+ people than I would need to either:
      • constantly run a redshift cluster with the tables stored in said cluster (this requires additional IAM configuration and security protocols)
      • store the results in MongoDB so everyone can just pull from that database using pandas (requires adding everyones IP to the MongoDB Network)
      • have users simply pull from the mkgpublic S3 Bucket (just need the S3 URI) and using a platform like Databricks for users to run analysis

Future Work

Ultimately, I want to use these datasets as the backend to a dashboard hosted on a website.

I want to incoporate reddit data as well into the mix. Afterwards, I want to run sentiment analysis on both the tweets and reddit thread datasets to determine the current crypto market sentiment.

Work will be done over the next few months on the above tasks.

Owner
Matthew Greene
Backend Engineer
Matthew Greene
Python Script for signingn LetsEncrypt certificate with certbot, and update them into Fortigate

Python Script for signingn LetsEncrypt certificate with certbot, and update them into Fortigate (to be used into the WEB VPN or Load Balancer certificate)

6 Jan 03, 2023
Python binding to the Networking and Cryptography (NaCl) library

PyNaCl: Python binding to the libsodium library PyNaCl is a Python binding to libsodium, which is a fork of the Networking and Cryptography library. T

Python Cryptographic Authority 941 Jan 04, 2023
High Performance Blockchain Deserializer

bitcoin_explorer is an efficient library for reading bitcoin-core binary blockchain file as a database (utilising multi-threading).

Congyu 2 Dec 28, 2021
Generate Random ETH addresses and Private Keys and Saved to file.

ethgen.py Generate Random ETH addresses and Private Keys and Saved to file. ETH address the file is stored in ETH-address.txt. ETH private keys the fi

deanondroid 2 Dec 21, 2021
Stenography encryption script

ImageCrypt Project description Installation Usage Project description Project AlexGyver on Python by TheK4n Design by Пашушка Byte packing in decimal

Kan 5 Dec 14, 2022
Tools for running airdrop and token distribution campaigns on the Solana blockchain.

Overview This repository contains some of the scripts we have used for running our airdrop campaigns and other distributions. Initially, all of these

147 Nov 17, 2022
Generate bitcoin public and private keys and check if they match a filelist of existing addresses that have a nonzero balance

btc-heist Running Install deps, i.e., python3 -m pip install -r requirements.txt Download the CSV dump of all bitcoin addresses with a balance and cut

Denis Khoshaba 103 Dec 05, 2022
Secure open-source password manager.

aes256_passwd_store This script securely encrypts or decrypts passwords on disk within a custom database file. It also features functionality to retri

14 Nov 15, 2022
This folder contains all the assignment of the course COL759 : Cryptography & Computer Security

Cryptography This folder contains all the assignment of the course COL759 : "Cryptography & Computer Security" Assignment 1 : Encyption, Decryption &

0 Jan 21, 2022
A crypto wallet to send bnb and ether coin using web3.py and moralis speedy node

A crypto wallet to send bnb and ether coin using web3.py and moralis speedy node

Ciscoquan 3 Aug 16, 2022
PeGuard - Windows PE crypter and packing utility

PEGUARD PEGUARD is a file crypter and packing utility. This project was original

11 Nov 28, 2022
BETCOIN BET is a digital currency system created with python

BETCOIN BET is a digital currency created with python and flask with features of a centralized bank, wallet system, and open transaction history of al

Ujjwal Kumar 3 Nov 16, 2021
Zero-dependency Cryptography Python Module with a self made method

TesohhCrypt TesohhCrypt is a zero-dependency Cryptography Python Module, with a method that i made. (likely someone already made a similar one, but i

Simone Tesini 1 Oct 26, 2021
Python app for encrypting messages with fernet cryptography.

Fernet Encryption Python app for encrypting messages with fernet cryptography. Github repo: https://github.com/mystic-repo/FernetEncryption PyPi: http

Mystic 1 May 28, 2022
EncryptAGit - Encrypt Your Git Repos

EncryptAGit - Encrypt Your Git Repos

midnite_runr 25 Oct 06, 2022
Amazing CryptoWAF was a CTF challenge for ALLES! CTF 2021

ctf-cryptowaf The AmazingCryptoWAF ™️ is used by the "noter" web app, to offer automagically military encryption for any user data. Even if an attacke

32 Jan 02, 2023
This program can encrypt/ decrypt any string

Ceasar_cipher Hey this is J0ey, this program is a very basic Caesar cipher encoder/decoder. In order to use this program, you will need to have Python

1 Jan 11, 2022
O BiscoitoDaSorte foi criado com o objetivo de estudar desenvolvimento de bots para Discord.

BiscoitoDaSorteBOT O BiscoitoDaSorte foi criado com o objetivo de estudar desenvolvimento de bots para Discord. BOT online e com o comando =sorte Requ

Jonas Carvalho 5 Mar 17, 2022
A python-jvm wrapper for interacting with the Ergo blockchain.

ergpy A python-jvm wrapper for interacting with the Ergo blockchain. Usage Requires Java 8 or higher to be installed on system pip install JPype1 pip

mgpai 16 Oct 05, 2022
Programme de chiffrement et déchiffrement affine d'un message en python3.

Chiffrement Affine En Python3 Programme de chiffrement et déchiffrement affine d'un message en python3. Explication du chiffrement affine avec complex

Malik Makkes 1 Mar 26, 2022