Parametric open source reconstructions of Voron printed parts

Overview

The Parametric Voron

This repository contains Fusion 360 reconstructions of various printed parts from the Voron printers (https://vorondesign.com/). Unlike the CAD files provided by the Voron team, which are essentially just STEP files in F3D format, these files have full parametric design history turned on, and are easy to edit.

This is a community effort and it may take months, or even years, to recreate the full set of parts. If you would like to contribute, feel free to open a pull request. Parts are organized per Voron release, with the same directory structure and naming conventions used by the original Voron parts.

For inspiration as to what this could eventually become, take a look at the Fusion 360 Models available for the Railcore project (https://railcore.org/). Every part is fully parametric with design history, and the parts are all linked together into a master assembly. (You will need to open in Fusion 360 directly to see the history, since the web version does not show that.)

Design Guidelines

  • All parts should match the Voron original parts as closely as possible. However, very small details that do not affect functionality do not need to be perfectly reconstructed. Examples:
    • If a complex shape could be constructed from a loft, an extruded cut, or a combination of fillets, please use whichever is most expedient. It's not necessary to choose the one which most exactly matches the result achieved in the original part.
    • Fillets and chamfers should have the same radius as the original part, but only within 0.05mm.
  • Including Voron logos and branding is optional, but preferred. All text should remain editable - no vector text please. The Voron logo is available in parametric F3D and rendered vector SVG formats in the assets folder. The font used for branding is Play from Google Fonts.
  • User parameters should be used where possible, for anything the user is very likely to want to change (e.g. the length of an extrude for something like a panel thickness), or for values which are reused frequently within the design and might need to be changed. However: a working part with no user parameters is preferable to no working part at all! Feel free to open a PR even if your F3D doesn't use them.
  • A pair of parts that are mirror images of each other only needs to have one F3D file uploaded, to avoid duplication. It is the user's responsibility to flip the part as needed before printing in the slicer.
  • Use millimeter measurements throughout.

Standard Parameter Names

For consistency across parts, where possible, please use the following names for various standard parameters (all units are millimeters):

Parameter Name Definition
ab_belt_width Width of the AB belts
chamfer Default chamfer, typically 0.4mm
extrusion_width Extrusion width
panel_thickness Panel thickness, including foam tape and VHB as needed
rail_width Linear rail width
tolerance Tolerance added for good fit, typically 0.2mm
z_belt_distance Distance between the Z belts
z_belt_width Width of the Z belts

Design Tips

An easy way to reconstruct a part is to import the original piece from the official Voron F3D CAD, center it, then start drawing sketches around it to capture the main dimensions. As you build up the part, you can hide or show the original body to compare against your component, and see what else you need to do.

To do this:

  • Open the original CAD F3D file in Fusion 360.
  • Find the part you are interested in in the heirarchy view.
  • Right click, and select "Save Copy As".
  • Open the new part and make it editable. Click on the body, go to MODIFY -> Align, and select the origin.

Before starting work, you MUST do the following, otherwise you will find yourself having to start all over again:

  • Turn on design history: right click the top level item in the heirarchy, and select "Capture Design History."
  • Create a new component: ASSEMBLE -> New Component.
  • Name the component to match the name of the part.
  • Activate the component in the heirarchy.
  • When starting your first sketch, be sure to select a plane that is part of the new component, and not a face of the imported body. Hiding the imported body temporarily is a good way to ensure this.

While working, you can capture measurements like distances, XYZ coordinates, and radii, by selecting appropriate points, lines, and curves, in the original component, and by using the INSPECT -> Measure tool as needed.

Don't forget to save your work often, since Fusion 360 can be unstable when used with certain graphics drivers. If you have an Nvidia graphics card and are running Windows, switch to the Studio driver using Geforce Experience (use the three dots icon at the top right of the DRIVERS tab), it is much more stable.

Before exporting, you can delete the imported body from the heirarchy.

Always follow the two golden rules of Fusion 360:

  1. Before doing anything, create a component and make sure it's activated.
  2. Name your components, sketches, and so on.

It's important to be aware of some shortcomings of Fusion 360 that require workarounds:

  • Extrudes in "join" mode combine bodies based on what is visible in the viewport at the time the designer does the join. However, this information is not captured in the design history! If you go back and edit the extrude, or modify a user parameter, Fusion may recombine bodies in a way that breaks the rest of the timeline. The solution is to put bodies that should stay separate into separate components: extrude will not join bodies from different components.

Progress (as of 2021-09-06 01:33AM EDT)

Voron-2 (46/131, 35%)

  • TEST_PRINTS (1/3, 33%)
    • Filament Card Caddy 25
    • Filament Card
    • Voron_Design_Cube_v7
  • VORON2.4 (45/128, 35%)
    • Electronics_Compartment (2/15, 13%)
      • DIN_Brackets (2/8, 25%)
        • duet_duex_bracket_x2
        • lrs_psu_bracket_clip
        • pcb_din_clip_x3
        • ramps_bracket_x2
        • raspberrypi_bracket
        • rs25_psu_bracket_clip
        • skr_1.3_1.4_bracket_x2
        • skr_mini_e3_bracket_x2
      • LCD_Module (0/4, 0%)
        • [a]_mini12864_case_hinge
        • mini12864_case_front
        • mini12864_case_rear
        • mini12864_spacer
      • Plug_Panel (0/3, 0%)
        • [a]_keystone_blank_insert
        • plug_panel
        • plug_panel_filtered_mains
    • Exhaust_Filter (2/4, 50%)
      • [a]_exhaust_filter_mount_x2
      • [a]_filter_access_cover
      • exhaust_filter_grill
      • exhaust_filter_housing
    • Gantry (15/54, 28%)
      • [a]_z_belt_clip_lower_x4
      • [a]_z_belt_clip_upper_x4
      • z_chain_bottom_anchor
      • z_chain_guide
      • AB_Drive_Units (1/6, 17%)
        • [a]_cable_cover
        • [a]_z_chain_retainer_bracket_x2
        • a_drive_frame_lower
        • a_drive_frame_upper
        • b_drive_frame_lower
        • b_drive_frame_upper
      • Front_Idlers (2/6, 33%)
        • [a]_tensioner_left
        • [a]_tensioner_right
        • front_idler_left_lower
        • front_idler_left_upper
        • front_idler_right_lower
        • front_idler_right_upper
      • X_Axis (7/35, 20%)
        • XY_Joints (0/8, 0%)
          • [a]_endstop_pod_hall_effect
          • [a]_endstop_pod_microswitch
          • [a]_xy_joint_cable_bridge_generic
          • [a]_xy_joint_cable_bridge_igus
          • xy_joint_left_lower
          • xy_joint_left_upper
          • xy_joint_right_lower
          • xy_joint_right_upper
        • X_Carriage (7/27, 26%)
          • [a]_belt_clamp_x2
          • [a]_blower_housing_front
          • blower_housing_rear
          • hotend_fan_mount
          • probe_retainer_bracket
          • x_carriage_frame_left
          • x_carriage_frame_right
          • x_carriage_pivot_block
          • Bowden (0/5, 0%)
            • bowden_module_front
            • bowden_module_rear_generic
            • bowden_module_rear_igus
            • bsp_adapter
            • tl_collet_adapter
          • Direct_Feed (4/8, 50%)
            • [a]_connector_cover
            • [a]_guidler
            • [a]_latch
            • chain_anchor_generic
            • chain_anchor_igus
            • extruder_body
            • extruder_motor_plate
            • latch_shuttle
          • Printheads (0/6, 0%)
            • E3D_V6 (0/2, 0%)
              • printhead_front_e3dv6
              • printhead_rear_e3dv6
            • Slice_Mosquito (0/2, 0%)
              • printhead_front_mosquito
              • printhead_rear_mosquito
            • TriangleLab_Dragon (0/2, 0%)
              • printhead_front_dragon
              • printhead_rear_dragon
      • Z_Joints (3/3, 100%)
        • z_joint_lower_x4
        • z_joint_upper_hall_effect
        • z_joint_upper_x4
    • Panel_Mounting (10/12, 83%)
      • bottom_panel_clip_x4
      • bottom_panel_hinge_x2
      • corner_panel_clip_3mm_x12
      • corner_panel_clip_6mm_x4
      • midspan_panel_clip_3mm_x12
      • midspan_panel_clip_6mm_x3
      • z_belt_cover_a_x2
      • z_belt_cover_b_x2
      • Front_Doors (4/4, 100%)
        • door_hinge_x4
        • handle_a_x2
        • handle_b_x2
        • latch_x2
    • Skirts (1/16, 6%)
      • [a]_60mm_fan_blank_insert_x2
      • [a]_belt_guard_a_x2
      • [a]_belt_guard_b_x2
      • side_fan_support_x2
      • 250 (0/4, 0%)
        • front_rear_skirt_a_250_x2
        • front_rear_skirt_b_250_x2
        • side_skirt_a_250_x2
        • side_skirt_b_250_x2
      • 300 (0/4, 0%)
        • front_rear_skirt_a_300_x2
        • front_rear_skirt_b_300_x2
        • side_skirt_a_300_x2
        • side_skirt_b_300_x2
      • 350 (0/4, 0%)
        • front_rear_skirt_a_350_x2
        • front_rear_skirt_b_350_x2
        • side_skirt_a_350_x2
        • side_skirt_b_350_x2
    • Spool_Management (2/2, 100%)
      • bowen_retainer
      • spool_holder
    • Tools (2/2, 100%)
      • bed_hole_marking_template_x1_Rev2
      • rail_installation_guide_center_x2
    • Z_Drive (6/11, 55%)
      • [a]_belt_tensioner_a_x2
      • [a]_belt_tensioner_b_x2
      • [a]_stopgap_80T_hubbed_gear
      • [a]_z_drive_baseplate_a_x2
      • [a]_z_drive_baseplate_b_x2
      • z_drive_main_a_x2
      • z_drive_main_b_x2
      • z_drive_retainer_a_x2
      • z_drive_retainer_b_x2
      • z_motor_mount_a_x2
      • z_motor_mount_b_x2
    • Z_Endstop (1/1, 100%)
      • nozzle_probe
    • Z_Idlers (4/4, 100%)
      • [a]_z_tensioner_x4_6mm
      • [a]_z_tensioner_x4_9mm
      • z_tensioner_bracket_a_x2
      • z_tensioner_bracket_b_x2
    • ZipChain (0/7, 0%)
      • XY (0/3, 0%)
        • zipchain2_xy_end
        • zipchain2_xy_link_a
        • zipchain2_xy_link_b
      • Z (0/4, 0%)
        • zipchain2_z_end
        • zipchain2_z_link_a
        • zipchain2_z_link_b
        • zipchain2_z_link_b_locking

License

All parts are licensed under the GPLv3. For the purposes of the GPL license:

  • "Source code" means:
    • Original parametric Fusion 360 (F3D) files, with design history enabled, fully visible, and editable.
    • Similar files from Autodesk Inventor, Solidworks, and any other parametric CAD tool.
    • DXFs and other editable vector-based graphics files.
    • Bitmap image files such as PNGs and JPGs.
    • Any other files which would normally be considered "source code" in a software project covered by GPLv3, such as scripts and source code in any programming language.
  • "Object code" means:
    • STEP files, STL files, 3MF files, F3D or other parametric CAD files which have had design history or original sketches removed or disabled.
    • Any bit sequence compiled from the "source code" or any derivative thereof, into a form from which the original "source code" cannot be directly retrieved.

Unless otherwise specified, copyright for each F3D file is owned collectively by the individual who committed (or is listed as an author in the commit for) the initial version of the file, and any individual who committed (or is listed as an author in the commit for) any modifications to it.

Owner
Matthew Lloyd
Matthew Lloyd
Scripts for measuring and displaying thermal behavior on Voron 3D printers

Thermal Profiling Measuring gantry deflection and frame expansion This script runs a series of defined homing and probing routines designed to charact

Jon Sanders 30 Nov 27, 2022
Provide Unifi device info via api to Home Assistant that will give ap sensors

Unifi AP Device info Provide Unifi device info via api to Home Assistant that will give ap sensors

12 Jan 07, 2023
SPI driven CircuitPython driver for PCA9745B constant current LED driver.

Introduction THIS IS VERY MUCH ALPHA AND IN ACTIVE DEVELOPMENT. THINGS WILL BREAK! THIS MAY ALSO BREAK YOUR THINGS! SPI driven CircuitPython driver fo

Andrew Ferguson 1 Jan 14, 2022
Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi

Clean Dashboard for Pi-Hole Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi.

Alessio Santoru 104 Dec 14, 2022
Python library to manipulate Ingenico mobile payment device like iCT220 or iWL220 equipped with Telium Manager. RS232/USB.

Python library to manipulate Ingenico mobile payment device like iCT220 or iWL220 equipped with Telium Manager. RS232/USB.

TAHRI Ahmed R. 72 Dec 24, 2022
PyLog - Simple keylogger that uses pynput to listen to keyboard input.

Simple keylogger that uses pynput to listen to keyboard input. Outputs to a text file and the terminal. Press the escape key to stop.

1 Dec 29, 2021
Baseline model for Augmented Home Assistant

Dataset Preparation Step 1. Rename the Virtual-Home output directory to 'vh.[name]', for example: 'vh.door' Make sure the directory contains 100+ fram

Stanford HCI 1 Aug 24, 2022
Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

GB Renewable Forecast Display This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the g

Andy Brace 32 Jul 02, 2022
This repository contains all the code and files needed to simulate the notspot quadrupedal robot using Gazebo and ROS.

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022
智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件

Drone智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。

wwy 349 Jan 03, 2023
A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT

MQTT-GPIO A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT using TLS. This script is short and meant to be edited

23 Oct 12, 2021
Example for Calculating Robot Dynamics Using Pinocchio Library

A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi

Rot_Tianers 33 Dec 28, 2022
Monorepo for my Raspberry Pi dashboard and GPS satellite listener.

🥧 pi dashboard My blog post: Listening to Satellites with my Raspberry Pi This is the monorepo for my Raspberry Pi dashboard!

Andrew Healey 27 Jun 08, 2022
This OctoPrint plugin will make the initial connection to 3D Hub a breeze

3D Hub Connector This OctoPrint plugin will make the initial connection to 3D Hub a breeze. In future it will help in setting up a tunnel connection a

3D Hub 2 Aug 03, 2022
A 3rd party Moonraker component to create timelapse of 3D prints.

A 3rd party Moonraker component to create timelapse of 3D prints.

Mainsail-Crew 166 Dec 26, 2022
OPNsense integration with Home Assistant

hass-opnsense Join OPNsense with home-assistant! hass-opnsense uses the built-in xmlrpc service of OPNsense for all interactions. This project is curr

Travis Glenn Hansen 54 Jan 03, 2023
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Get the AltAz coordinates for a given object using astropy and output on a OLED screen.

Star Coordinates Get the AltAz coordinates for a given object using astropy and output on a OLED screen. As a very very newcomer to the astronomy scen

Craig Cmehil 1 Jan 31, 2022
A refreshed Python toolbox for building complex digital hardware

A refreshed Python toolbox for building complex digital hardware

nMigen 1k Jan 05, 2023