Python scripts for a generic performance testing infrastructure using Locust.

Related tags

TestingLocust_Scripts
Overview

TODOs

  • Reference to published paper or online version of it
  • loadtest_plotter.py: Cleanup and reading data from files
  • ARS_simulation.py: Cleanup, documentation and control workloads and parameters of the simulation model through CLI
  • locust-parameter-variation.py: Cleanup and Documentation
  • Move the files into subfolders (Executors, Load Testers, Evaluators, Systems under Test)

Locust Performance Testing Infrastructure

In [1] we introduced a generic performance testing infrastructure and used it in an industrial case study. Our idea is to have decoupled components, Python scripts in our case, that together allow to:

  1. reproducible execute a load testing tool with a set of parameters for a particular experiment,
  2. evaluate the performance measurements assisted by visualizations or automatic evaluators.

Generally, we have four types of components in our infrastructure:

  • Executors: execute a particular Load Tester as long as the Load Tester provides a CLI or an API;
  • Load Testers: execute the load test, parametrized with values given by an Executor. Have to output a logfile containing the response times;
  • Evaluators: postprocess the logfile and for example plot the response times;
  • Systems under Test (SUTs): Target systems we want to test. Usually, the target systems will be external systems, e.g., web servers. In our case, we build software that simulates the behavior of a real system, in order to provide the means for others to roughly reproduce our experiments.

More details about our generic performance testing infrastructure can be found in our paper [1].

This repository contains the aforementioned Python scripts:

  • Executors:
    • executor.py: executes Locust with a set of parameters;
    • locust-parameter-variation.py: executes Locust and keeps increasing the load. This is similar to Locust's Step Load Mode, however, our approach increases the number of clients for as long as the ARS complies with real-time requirements in order to find the saturation point of the ARS.
  • Load Testers:
    • locust_tester.py: contains specific code for Locust to perform the actual performance test. For demonstration purposes, this script tests ARS_simulation.py. Outputs a locust_log.log;
    • locust_multiple_requests: an enhanced version of locust_tester that sends additional requests to generate more load.
    • locust_teastore.py: performs load testing against TeaStore, or our simulated TeaStore.
  • Evaluators:
    • loadtest_plotter.py: reads the locust_log.log, plots response times, and additional metrics to better visualize, if the real-time requirements of the EN 50136 are met.
  • SUTs
    • Alarm Receiving Software Simulation (ARS_simulation.py): simulates an industrial ARS based on data measured in the production environment of the GS company group.
    • TeaStore (teastore_simulation.py): simulates TeaStore based on a predictive model generated in a lab environment.

Instructions to reproduce results in our paper

Quick start

  • Clone the repository;
  • run pip3 install -r requirements.txt;
  • In the file ARS_simulation.py make sure that the constant MASCOTS2020 is set to True.
  • open two terminal shells:
    1. run python3 ARS_simulation.py in one of them;
    2. run python3 executor.py. in the other.
  • to stop the test, terminate the executor.py script;
  • run python3 loadtest_plotter.py, pass the locust_log.log and see the results. :)

Details

Using the performance testing infrastructure available in this repository, we conducted performance tests in a real-world alarm system provided by the GS company. To provide a way to reproduce our results without the particular alarm system, we build a software simulating the Alarm Receiving Software. The simulation model uses variables, we identified as relevant and also performed some measurements in the production environment, to initialize the variables correctly.

To reproduce our results, follow the steps in the Section "Quick start". The scripts are already preconfigured, to simulate a realistic workload, inject faults, and automatically recover from them. The recovery is performed after the time, the real fault management mechanism requires.

If you follow the steps and, for example, let the test run for about an hour, you will get similar results to the ones you can find in the Folder "Tests under Fault".

Results after running our scripts for about an hour:

Results


Keep in mind that we use a simulated ARS here; in our paper we present measurements performed with a real system, thus the results reproduced with the code here are slightly different.

Nonetheless, the overall observations we made in our paper, are in fact reproducible.


Instructions on how to adapt our performance testing infrastructure to other uses

After cloning the repository, take a look at the locust_tester.py. This is, basically, an ordinary Locust script that sends request to the target system and measures the response time, when the response arrives. Our locust_tester.py is special, because:

  • we implemented a custom client instead of using the default;
  • we additionally log the response times to a logfile instead of using the .csv files Locust provides.

So, write a performance test using Locust, following the instructions of the Locust developers on how to write a Locust script. The only thing to keep in mind is, that your Locust script has to output the measured response times to a logfile in the same way our script does it. Use logger.info("Response time %s ms", total_time) to log the response times.

When you have your Locust script ready, execute it with python3 executor.py, pass the path to your script as argument, and when you want to finish the load test, terminate it with Ctrl + C.

Use python3 executor.py --help to get additional information.

Example call:

% python3 executor.py locust_scripts/locust_tester.py

After that, plot your results:

% python3 loadtest_plotter.py
Path to the logfile: locust_log.log
Owner
Juri Tomak
Juri Tomak
A web scraping using Selenium Webdriver

Savee - Images Downloader Project using Selenium Webdriver to download images from someone's profile on https:www.savee.it website. Usage The project

Caio Eduardo Lobo 1 Dec 17, 2021
Auto Click by pyautogui and excel operations.

Auto Click by pyautogui and excel operations.

Janney 2 Dec 21, 2021
Statistical tests for the sequential locality of graphs

Statistical tests for the sequential locality of graphs You can assess the statistical significance of the sequential locality of an adjacency matrix

2 Nov 23, 2021
✅ Python web automation and testing. 🚀 Fast, easy, reliable. 💠

Build fast, reliable, end-to-end tests. SeleniumBase is a Python framework for web automation, end-to-end testing, and more. Tests are run with "pytes

SeleniumBase 3k Jan 04, 2023
Python scripts for a generic performance testing infrastructure using Locust.

TODOs Reference to published paper or online version of it loadtest_plotter.py: Cleanup and reading data from files ARS_simulation.py: Cleanup, docume

Juri Tomak 3 Dec 15, 2022
Testing Calculations in Python, using OOP (Object-Oriented Programming)

Testing Calculations in Python, using OOP (Object-Oriented Programming) Create environment with venv python3 -m venv venv Activate environment . venv

William Koller 1 Nov 11, 2021
This package is a python library with tools for the Molecular Simulation - Software Gromos.

This package is a python library with tools for the Molecular Simulation - Software Gromos. It allows you to easily set up, manage and analyze simulations in python.

14 Sep 28, 2022
Multi-asset backtesting framework. An intuitive API lets analysts try out their strategies right away

Multi-asset backtesting framework. An intuitive API lets analysts try out their strategies right away. Fast execution of profit-take/loss-cut orders is built-in. Seamless with Pandas.

Epymetheus 39 Jan 06, 2023
GitHub action for AppSweep Mobile Application Security Testing

GitHub action for AppSweep can be used to continuously integrate app scanning using AppSweep into your Android app build process

Guardsquare 14 Oct 06, 2022
Repository for JIDA SNP Browser Web Application: Local Deployment

JIDA JIDA is a web application that retrieves SNP information for a genomic region of interest in Homo sapiens and calculates specific summary statist

3 Mar 03, 2022
Checks for a 200 response from your subdomain list.

Check for available subdomains Written in Python, this terminal based application looks for a 200 response from the subdomain list you've provided. En

Sean 1 Nov 03, 2021
Thin-wrapper around the mock package for easier use with pytest

pytest-mock This plugin provides a mocker fixture which is a thin-wrapper around the patching API provided by the mock package: import os class UnixF

pytest-dev 1.5k Jan 05, 2023
Getting the most out of your hobby servo

ServoProject by Adam Bäckström Getting the most out of your hobby servo Theory The control system of a regular hobby servo looks something like this:

209 Dec 20, 2022
Fidelipy - Semi-automated trading on fidelity.com

fidelipy fidelipy is a simple Python 3.7+ library for semi-automated trading on fidelity.com. The scope is limited to the Trade Stocks/ETFs simplified

Darik Harter 8 May 10, 2022
Python version of the Playwright testing and automation library.

🎭 Playwright for Python Docs | API Playwright is a Python library to automate Chromium, Firefox and WebKit browsers with a single API. Playwright del

Microsoft 7.8k Jan 02, 2023
Hamcrest matchers for Python

PyHamcrest Introduction PyHamcrest is a framework for writing matcher objects, allowing you to declaratively define "match" rules. There are a number

Hamcrest 684 Dec 29, 2022
Plugin for generating HTML reports for pytest results

pytest-html pytest-html is a plugin for pytest that generates a HTML report for test results. Resources Documentation Release Notes Issue Tracker Code

pytest-dev 548 Dec 28, 2022
Language-agnostic HTTP API Testing Tool

Dredd — HTTP API Testing Framework Dredd is a language-agnostic command-line tool for validating API description document against backend implementati

Apiary 4k Jan 05, 2023
A utility for mocking out the Python Requests library.

Responses A utility library for mocking out the requests Python library. Note Responses requires Python 2.7 or newer, and requests = 2.0 Installing p

Sentry 3.8k Jan 03, 2023