Python scripts for a generic performance testing infrastructure using Locust.

Related tags

TestingLocust_Scripts
Overview

TODOs

  • Reference to published paper or online version of it
  • loadtest_plotter.py: Cleanup and reading data from files
  • ARS_simulation.py: Cleanup, documentation and control workloads and parameters of the simulation model through CLI
  • locust-parameter-variation.py: Cleanup and Documentation
  • Move the files into subfolders (Executors, Load Testers, Evaluators, Systems under Test)

Locust Performance Testing Infrastructure

In [1] we introduced a generic performance testing infrastructure and used it in an industrial case study. Our idea is to have decoupled components, Python scripts in our case, that together allow to:

  1. reproducible execute a load testing tool with a set of parameters for a particular experiment,
  2. evaluate the performance measurements assisted by visualizations or automatic evaluators.

Generally, we have four types of components in our infrastructure:

  • Executors: execute a particular Load Tester as long as the Load Tester provides a CLI or an API;
  • Load Testers: execute the load test, parametrized with values given by an Executor. Have to output a logfile containing the response times;
  • Evaluators: postprocess the logfile and for example plot the response times;
  • Systems under Test (SUTs): Target systems we want to test. Usually, the target systems will be external systems, e.g., web servers. In our case, we build software that simulates the behavior of a real system, in order to provide the means for others to roughly reproduce our experiments.

More details about our generic performance testing infrastructure can be found in our paper [1].

This repository contains the aforementioned Python scripts:

  • Executors:
    • executor.py: executes Locust with a set of parameters;
    • locust-parameter-variation.py: executes Locust and keeps increasing the load. This is similar to Locust's Step Load Mode, however, our approach increases the number of clients for as long as the ARS complies with real-time requirements in order to find the saturation point of the ARS.
  • Load Testers:
    • locust_tester.py: contains specific code for Locust to perform the actual performance test. For demonstration purposes, this script tests ARS_simulation.py. Outputs a locust_log.log;
    • locust_multiple_requests: an enhanced version of locust_tester that sends additional requests to generate more load.
    • locust_teastore.py: performs load testing against TeaStore, or our simulated TeaStore.
  • Evaluators:
    • loadtest_plotter.py: reads the locust_log.log, plots response times, and additional metrics to better visualize, if the real-time requirements of the EN 50136 are met.
  • SUTs
    • Alarm Receiving Software Simulation (ARS_simulation.py): simulates an industrial ARS based on data measured in the production environment of the GS company group.
    • TeaStore (teastore_simulation.py): simulates TeaStore based on a predictive model generated in a lab environment.

Instructions to reproduce results in our paper

Quick start

  • Clone the repository;
  • run pip3 install -r requirements.txt;
  • In the file ARS_simulation.py make sure that the constant MASCOTS2020 is set to True.
  • open two terminal shells:
    1. run python3 ARS_simulation.py in one of them;
    2. run python3 executor.py. in the other.
  • to stop the test, terminate the executor.py script;
  • run python3 loadtest_plotter.py, pass the locust_log.log and see the results. :)

Details

Using the performance testing infrastructure available in this repository, we conducted performance tests in a real-world alarm system provided by the GS company. To provide a way to reproduce our results without the particular alarm system, we build a software simulating the Alarm Receiving Software. The simulation model uses variables, we identified as relevant and also performed some measurements in the production environment, to initialize the variables correctly.

To reproduce our results, follow the steps in the Section "Quick start". The scripts are already preconfigured, to simulate a realistic workload, inject faults, and automatically recover from them. The recovery is performed after the time, the real fault management mechanism requires.

If you follow the steps and, for example, let the test run for about an hour, you will get similar results to the ones you can find in the Folder "Tests under Fault".

Results after running our scripts for about an hour:

Results


Keep in mind that we use a simulated ARS here; in our paper we present measurements performed with a real system, thus the results reproduced with the code here are slightly different.

Nonetheless, the overall observations we made in our paper, are in fact reproducible.


Instructions on how to adapt our performance testing infrastructure to other uses

After cloning the repository, take a look at the locust_tester.py. This is, basically, an ordinary Locust script that sends request to the target system and measures the response time, when the response arrives. Our locust_tester.py is special, because:

  • we implemented a custom client instead of using the default;
  • we additionally log the response times to a logfile instead of using the .csv files Locust provides.

So, write a performance test using Locust, following the instructions of the Locust developers on how to write a Locust script. The only thing to keep in mind is, that your Locust script has to output the measured response times to a logfile in the same way our script does it. Use logger.info("Response time %s ms", total_time) to log the response times.

When you have your Locust script ready, execute it with python3 executor.py, pass the path to your script as argument, and when you want to finish the load test, terminate it with Ctrl + C.

Use python3 executor.py --help to get additional information.

Example call:

% python3 executor.py locust_scripts/locust_tester.py

After that, plot your results:

% python3 loadtest_plotter.py
Path to the logfile: locust_log.log
Owner
Juri Tomak
Juri Tomak
The Penetration Testers Framework (PTF) is a way for modular support for up-to-date tools.

The PenTesters Framework (PTF) is a Python script designed for Debian/Ubuntu/ArchLinux based distributions to create a similar and familiar distribution for Penetration Testing

trustedsec 4.5k Dec 28, 2022
FakeDataGen is a Full Valid Fake Data Generator.

FakeDataGen is a Full Valid Fake Data Generator. This tool helps you to create fake accounts (in Spanish format) with fully valid data. Within this in

Joel GM 64 Dec 12, 2022
Nokia SR OS automation

Nokia SR OS automation Nokia is one of the biggest vendors of the telecommunication equipment, which is very popular in the Service Provider segment.

Karneliuk.com 7 Jul 23, 2022
Cloint India Pvt. Ltd's (ClointFusion) Pythonic RPA (Automation) Platform

Welcome to , Made in India with ❤️ Description Cloint India Pvt. Ltd - Python functions for Robotic Process Automation shortly RPA. What is ClointFusi

Cloint India Pvt. Ltd 31 Apr 12, 2022
Based on the selenium automatic test framework of python, the program crawls the score information of the educational administration system of a unive

whpu_spider 该程序基于python的selenium自动化测试框架,对某高校的教务系统的成绩信息实时爬取,在检测到成绩更新之后,会通过电子邮件的方式,将更新的成绩以文本的方式发送给用户,可以使得用户在不必手动登录教务系统网站时,实时获取成绩更新的信息。 该程序仅供学习交流,不可用于恶意攻

1 Dec 30, 2021
Baseball Discord bot that can post up-to-date scores, lineups, and home runs.

Sunny Day Discord Bot Baseball Discord bot that can post up-to-date scores, lineups, and home runs. Uses webscraping techniques to scrape baseball dat

Benjamin Hammack 1 Jun 20, 2022
A configurable set of panels that display various debug information about the current request/response.

Django Debug Toolbar The Django Debug Toolbar is a configurable set of panels that display various debug information about the current request/respons

Jazzband 7.3k Jan 02, 2023
Webscreener is a tool for mass web domains pentesting.

Webscreener is a tool for mass web domains pentesting. It is used to take snapshots for domains that is generated by a tool like knockpy or Sublist3r. It cuts out most of the pentesting time by scree

Seekurity 3 Jun 07, 2021
The evaluator covering all of the metrics required by tasks within the DUE Benchmark.

DUE Evaluator The repository contains the evaluator covering all of the metrics required by tasks within the DUE Benchmark, i.e., set-based F1 (for KI

DUE Benchmark 4 Jan 21, 2022
Ab testing - basically a statistical test in which two or more variants

Ab testing - basically a statistical test in which two or more variants

Buse Yıldırım 5 Mar 13, 2022
A friendly wrapper for modern SQLAlchemy and Alembic

A friendly wrapper for modern SQLAlchemy (v1.4 or later) and Alembic. Documentation: https://jpsca.github.io/sqla-wrapper/ Includes: A SQLAlchemy wrap

Juan-Pablo Scaletti 129 Nov 28, 2022
Pytest support for asyncio.

pytest-asyncio: pytest support for asyncio pytest-asyncio is an Apache2 licensed library, written in Python, for testing asyncio code with pytest. asy

pytest-dev 1.1k Jan 02, 2023
Statistical tests for the sequential locality of graphs

Statistical tests for the sequential locality of graphs You can assess the statistical significance of the sequential locality of an adjacency matrix

2 Nov 23, 2021
The successor to nose, based on unittest2

Welcome to nose2 nose2 is the successor to nose. It's unittest with plugins. nose2 is a new project and does not support all of the features of nose.

736 Dec 16, 2022
Test scripts etc. for experimental rollup testing

rollup node experiments Test scripts etc. for experimental rollup testing. untested, work in progress python -m venv venv source venv/bin/activate #

Diederik Loerakker 14 Jan 25, 2022
Pytest-typechecker - Pytest plugin to test how type checkers respond to code

pytest-typechecker this is a plugin for pytest that allows you to create tests t

vivax 2 Aug 20, 2022
BDD library for the py.test runner

BDD library for the py.test runner pytest-bdd implements a subset of the Gherkin language to enable automating project requirements testing and to fac

pytest-dev 1.1k Jan 09, 2023
Travel through time in your tests.

time-machine Travel through time in your tests. A quick example: import datetime as dt

Adam Johnson 373 Dec 27, 2022
Kent - Fake Sentry server for local development, debugging, and integration testing

Kent is a service for debugging and integration testing Sentry.

Will Kahn-Greene 100 Dec 15, 2022
Python script to automatically download from Zippyshare

Zippyshare downloader and Links Extractor Python script to automatically download from Zippyshare using Selenium package and Internet Download Manager

Daksh Khurana 2 Oct 31, 2022