Make some improvements in the Pizza class and pizzashop file by refactoring.

Overview

Refactoring Practice

Make some improvements in the Pizza class and pizzashop file by refactoring.

Goals to achieve for the code are:

  1. Replace string literals with named constants.
  2. Rename amethods to use the Python naming convention.
  3. Move misplaced code to a better place (Extract Method and then Move Method). This improves encapsulation and makes the code more reusable.
  4. Replace "switch" (if ... elif ... elif) with object behavior.

Background

Pizza describes a pizza with a size and optional toppings. The price depends on size and number of toppings. For example, large pizza is 280 Baht plus 20 Baht per topping.

pizza = Pizza('large')
pizza.addTopping("mushroom")
pizza.addtopping("pineapple")
print("The price is", pizza.getPrice())
'The price is 320'

There are 2 files to start with:

pizza.py     - code for Pizza class
pizzashop.py - create some pizzas and print them. Use to verify code.

1. Replace String Literals with Named Constants

Use Named Constants instead of Literals in Code.

In the Pizza class replace 'small', 'medium', and 'large" with named constants. Use your IDE's refactoring feature, not manual find and replace.

  1. Select 'small' in Pizza.

    • VSCode: right click -> Extract variable.
    • Pycharm: right click -> Refactor -> Extract Constant
    • Pydev: Refactoring -> Extract local variable.
  2. Do the same thing for "medium" and "large".

  3. In my tests, none of the IDE did exactly what I want. The constants SMALL, MEDIUM, and LARGE are top-level variables in pizza.py, but not part of the Pizza class.

    SMALL = 'small'
    MEDIUM = 'medium'
    LARGE = 'large'
    
    class Pizza:
        ...

    We would prefer to encapsulate the sizes inside the Pizza class, e.g. Pizza.SMALL (I'm disappointed none of the IDE did this). However, we will eventually get rid of these constants, so leave the constants as top-level variables for now.

  4. When you are done, the strings 'small', 'medium', 'large' should only appear once in the code (in the Pizza class).

  5. Did the IDE also change the sizes in pizzashop.py? If not, edit pizzashop.py and change sizes to references (Pizza.SMALL)

    from pizza import *
    
    if __name__ == "__main__":
        pizza = Pizza(SMALL)
        ...
        pizza2 = Pizza(MEDIUM)
        ...
        pizza3 = Pizza(LARGE)
  6. Run the code. Verify the results are the same.

2. Rename Method

  1. getPrice is not a Python-style name. Use refactoring to rename it to get_price.

    • VSCode: right-click on method name, choose "Rename Symbol"
    • Pycharm: right-click, Refactor -> Rename
    • Pydev: "Refactoring" menu -> Rename
  2. Did the IDE also rename getPrice in order_pizza()?

    • VSCode: no
    • Pycharm: yes. Notification of dynamic code in preview.
    • Pydev: yes (lucky guess)
    • This is a limitation of tools for dynamic languages. The tool can't be sure that the "pizza" parameter in order_pizza is really a Pizza. To help it, use type annotations.
  3. Undo the refactoring, so you have original getPrice.

  4. Add a type annotation in pizzashop.py so the IDE knows that parameter is really a Pizza:

    def order_pizza(pizza: Pizza):
    • Then do Refactoring -> Rename (in pizza.py) again.
    • Does the IDE change getPrice to get_price in pizzashop.py also?
  5. Rename addTopping in Pizza to add_topping. Did the IDE also rename it in pizzashop?

    • If not, rename it manually.
    • In this case, a smart IDE can infer that addTopping in pizzashop refers to Pizza.addTopping. Why?
  6. Run the code. Verify the code works the same.

3. Extract Method and Move Method

Perform refactorings in small steps. In this case, we extract a method first, then move it to a better place.

order_pizza creates a string description to describe the pizza. That is a poor location for this because:

  1. the description could be needed elsewhere in the application
  2. it relies on info about a Pizza that only the Pizza knows.

Therefore, it should be the Pizza's job to describe itself. This is also known as the Information Expert principle.

Try an Extract Method refactoring, followed by Move Method.

  1. Select these statements in order_pizza that create the description:

     description = pizza.size
     if pizza.toppings:
         description += " pizza with "+ ", ".join(pizza.toppings)
     else:
         description += " plain pizza"
  2. Refactor (Extract Method):

    • VS Code: right click -> 'Extract Method'. Enter "describe" as method name. (This worked in 2020, but in current VS Code it does not.)
    • PyCharm: right click -> Refactor -> Extract -> Method
    • PyCharm correctly suggests that "pizza" should be parameter, and it returns the description. (correct!)
    • PyDev: Refactoring menu -> Extract method. PyDev asks you if pizza should a parameter (correct), but the new method does not return anything. Fix it.
    • All IDE: after refactoring, move the two comment lines from order_pizza to describe as shown here:
    def describe(pizza):
        # create printable description of the pizza such as
        # "small pizza with muschroom" or "small plain pizza"
        description = pizza.size
        if pizza.toppings:
            description += " pizza with "+ ", ".join(pizza.toppings)
        else:
            description += " plain pizza"
        return description

    Forgetting to move comments is a common problem in refactoring. Be careful.

  3. Move Method: The code for describe() should be a method in the Pizza class, so it can be used anywhere that we have a pizza.

    • None of the 3 IDE do this correctly, so do it manually.
    • Select the describe(pizza) method in pizzashop.py and CUT it.
    • Inside the Pizza class (pizza.py), PASTE the method.
    • Change the parameter name from "pizza" to "self" (Refactor -> Rename).
  4. Rename Method: In pizza.py rename describe to __str__(self) method. You should end up with this:

    # In Pizza class:
    def __str__(self):
        # create printable description of the pizza such as
        # "small pizza with muschroom" or "small plain pizza"
        description = self.size
        if self.toppings:
            description += " pizza with "+ ", ".join(self.toppings)
        else:
            description += " plain pizza"
        return description
  5. Back in pizzashop.py, modify the order_pizza to get the description from Pizza:

    def order_pizza(pizza):
        description = str(pizza)
        print(f"A {descripton}")
        print("Price:", pizza.get_price())
  6. Eliminate Temp Variable The code is now so simple that we don't need the description variable. Eliminate it:

    def order_pizza(pizza)
        print(f"A {str(pizza)}")
        print("Price:", pizza.get_price())
  7. Test. Run the pizzashop code. Verify the results are the same.

4. Replace 'switch' with Call to Object Method

This is the most complex refactoring, but it gives big gains in code quality:

  • code is simpler
  • enables us to validate the pizza size in constructor
  • prices and sizes can be changed or added without changing the Pizza class

The get_price method has a block like this:

if self.size == Pizza.SMALL:
    price = ...
elif self.size == Pizza.MEDIUM:
    price = ...
elif self.size == Pizza.LARGE:
    price = ...

The pizza has to know the pricing rule for each size, which makes the code complex. An O-O approach is to let the pizza sizes compute their own price. Therefore, we will define a new datatype (class) for pizza size.

Python has an Enum type for this. An "enum" is a type with a fixed set of values, which are static instances of the enum type. Each enum member has a name and a value.

  1. In pizza.py replace the named constants LARGE, MEDIUM, and SMALL with an Enum named PizzaSize:

    from enum import Enum
    
    class PizzaSize(Enum):
        # Enum members written as: name = value
        small = 120
        medium = 200
        large = 280
    
        def __str__(self):
            return self.name
  2. Write a short script (in pizza.py or another file) to test the enum:

    if __name__ == "__main__":
        # test the PizzaSize enum
        for size in PizzaSize:
            print(size.name, "pizza has price", size.value)

    This should print the pizza prices. But the code size.value doesn't convey it's meaning: it should be the price. but the meaning of size.value is not clear. Add a price property to PizzaSize:

    # PizzaSize
        @property
        def price(self):
            return self.value
  3. In Pizza.get_price(), eliminate the if size == SMALL: elif ... It is no longer needed. The Pizza sizes know their own price.

    def get_price(self):
        """Price of a pizza depends on size and number of toppings"""
        price = self.size.price + 20*len(self.toppings)
  4. In pizzashop.py replace the constants SMALL, MEDIUM, and LARGE with PizzaSize.small, PizzaSize.medium, etc.

  5. Run the code. It should work as before. If not, fix any

Extensibility

Can you add a new pizza size without changing the Pizza class?

class PizzaSize(Enum):
    ...
    jumbo = 400

# and in pizzashop.__main__:
pizza = Pizza(PizzaSize.jumbo)

Type Safety

Using an Enum instead of Strings for named values reduces the chance for error in creating a pizza, such as Pizza("LARGE").

For type safety, you can add an annotation and a type check in the Pizza constructor:

    def __init__(self, size: PizzaSize):
        if not isinstance(size, PizzaSize):
            raise TypeError('size must be a PizzaSize')
        self.size = size

Further Refactoring

What if the price of each topping is different? Maybe "durian" topping costs more than "mushroom" topping.

There are two refactorings for this:

  1. Pass whole object instead of values - instead of calling size.price(len(toppings)), use size.price(toppings).
  2. Delegate to a Strategy - pricing varies but sizes rarely change, so define a separate class to compute pizza price. (Design principle: "Separate the parts that vary from the parts that stay the same")

References

  • The Refactoring course topic has suggested references.
  • Refactoring: Improving the Design of Existing Code by Martin Fowler is the bible on refactoring. The first 4 chapters explain the fundamentals.
Owner
James Brucker
Instructor at the Computer Engineering Dept of Kasetsart University.
James Brucker
Collection of code auto-generation utility scripts for the Horizon `Boot` system module

boot-scripts This is a collection of code auto-generation utility scripts for the Horizon Boot system module, intended for use in Atmosphère. Usage Us

4 Oct 11, 2022
Script to autocompound 3commas BO:SO based on user provided risk factor

3commas_compounder Script to autocompound 3commas BO:SO based on user provided risk factor Setup Step 1 git clone this repo into your working director

0 Feb 24, 2022
Gradually automate your procedures, one step at a time

Gradualist Gradually automate your procedures, one step at a time Inspired by https://blog.danslimmon.com/2019/07/15/ Features Main Features Converts

Ross Jacobs 8 Jul 24, 2022
Python based utilities for interacting with digital multimeters that are built on the FS9721-LP3 chipset.

Python based utilities for interacting with digital multimeters that are built on the FS9721-LP3 chipset.

Fergus 1 Feb 02, 2022
A library for interacting with Path of Exile game and economy data, and a unique loot filter generation framework.

wraeblast A library for interfacing with Path of Exile game and economy data, and a set of item filters geared towards trade league players. Filter Ge

David Gidwani 29 Aug 28, 2022
NetConfParser is a tool that helps you analyze the rpcs coming and going from a netconf client to a server

NetConfParser is a tool that helps you analyze the rpcs coming and going from a netconf client to a server

Aero 1 Mar 31, 2022
produces PCA on genotypes from fasta files (popPhyl's ID format)

popPhyl_PCA Performs PCA of genotypes. Works in two steps. 1. Input file A single fasta file containing different loci, in different populations/speci

camille roux 2 Oct 08, 2021
Set of utilities for exporting/controlling your robot in Blender

Blender Robotics Utils This repository contains utilities for exporting/controlling your robot in Blender Maintainers This repository is maintained by

Robotology 33 Nov 30, 2022
A collection of utility functions to prototype geometry processing research in python

gpytoolbox This repo is a work in progress and contains general utility functions I have needed to code while trying to work on geometry process resea

Silvia Sellán 73 Jan 06, 2023
An okayish python script to generate a random Euler circuit with given number of vertices and edges.

Euler-Circuit-Test-Case-Generator An okayish python script to generate a random Euler circuit with given number of vertices and edges. Executing the S

Alen Antony 1 Nov 13, 2021
Run functions in parallel easily, with their results typed correctly!

typesafe_parmap pip install pip install typesafe-parmap Run functions in parallel safely with typesafe parmap! GitHub: https://github.com/thejaminato

James Chua 3 Nov 06, 2021
A python package containing all the basic functions and classes for python. From simple addition to advanced file encryption.

A python package containing all the basic functions and classes for python. From simple addition to advanced file encryption.

PyBash 11 May 22, 2022
Small project to interact with python, C, HTML, JavaScript, PHP.

Micro Hidroponic Small project to interact with python, C, HTML, JavaScript, PHP. Table of Contents General Info Technologies Used Screenshots Usage P

Filipe Martins 1 Nov 10, 2021
A Python utility belt containing simple tools, a stdlib like feel, and extra batteries. Hashing, Caching, Timing, Progress, and more made easy!

Ubelt is a small library of robust, tested, documented, and simple functions that extend the Python standard library. It has a flat API that all behav

Jon Crall 638 Dec 13, 2022
A (very dirty) experiment to remove layers from a Docker image.

Surgically remove layers from a Docker image (with a chainsaw)

Jérôme Petazzoni 9 Jun 08, 2022
Networkx with neo4j back-end

Dump networkx graph into nodes/relations TSV from neo4jnx.tsv import graph_to_tsv g = pklload('indranet_dir_graph.pkl') graph_to_tsv(g, 'docker/nodes.

Benjamin M. Gyori 1 Oct 27, 2021
A monitor than send discord webhook when a specific monitored product has stock in your nearby pickup stores.

Welcome to Apple In-store Monitor This is a monitor that are not fully scaled, and might still have some bugs.

5 Jun 16, 2022
The Black shade analyser and comparison tool.

diff-shades The Black shade analyser and comparison tool. AKA Richard's personal take at a better black-primer (by stealing ideas from mypy-primer) :p

Richard Si 10 Apr 29, 2022
🔩 Like builtins, but boltons. 250+ constructs, recipes, and snippets which extend (and rely on nothing but) the Python standard library. Nothing like Michael Bolton.

Boltons boltons should be builtins. Boltons is a set of over 230 BSD-licensed, pure-Python utilities in the same spirit as — and yet conspicuously mis

Mahmoud Hashemi 6k Jan 04, 2023
It is a tool that looks for a specific username in social networks

It is a tool that looks for a specific username in social networks

MasterBurnt 6 Oct 07, 2022