Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Related tags

Documentationeacc
Overview

Eacc

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents. It uses Python code to specify both lexer and grammar for a given document. Eacc can handle succinctly most parsing cases that existing Python parsing tools propose to address.

Documents are split into tokens and a token has a type when a sequence of tokens is matched it evaluates to a specific type then rematcned again against the existing rules. The types can be function objects it means patterns can be evaluated based on extern conditions.

The fact of it being possible to have a grammar rule associated to a type and the type being variable in the context of the program it makes eacc useful for some text analysis problems.

A document grammar is written mostly in an ambiguous manner. The parser has a lookahead mechanism to express precedence when matching rules.

It is possible to extend the document grammar at the time it is being parsed. Such a feature is interesting to handle some edge cases.

The parser also accept some special operators like Except, Only, Times etc. These operators are used to match sequences of tokens based on their token types and length.

Features

  • Fast and flexible Lexer

    • Use class inheritance to extend/modify your existing lexers.
  • Handle broken documents.

    • Useful in some edge cases.
  • Short implementation

    • You can easily extend or modify functionalities.
  • Powerful but easy to learn

    • Learn a few classes workings to implement a parser.
  • Pythonic notation for grammars

    • No need to dig deep into grammar theory.

Note: For a real and more sophisticated example of eacc usage check out.

Crocs is capable of reading a regex string then generating possible matches for the inputed regex.

https://github.com/iogf/crocs

Basic Example

The code below specifies a lexer and a parsing approach for a simple expression calculator. When one of the mathematical operations +, -, * or / is executed then the result is a number

Based on such a simple assertion it is possible to implement our calculator.

from eacc.eacc import Rule, Grammar, Eacc
from eacc.lexer import Lexer, LexTok, XSpec
from eacc.token import Plus, Minus, LP, RP, Mul, Div, Num, Blank, Sof, Eof

class CalcTokens(XSpec):
    # Used to extract the tokens.
    t_plus   = LexTok(r'\+', Plus)
    t_minus  = LexTok(r'\-', Minus)

    t_lparen = LexTok(r'\(', LP)
    t_rparen = LexTok(r'\)', RP)
    t_mul    = LexTok(r'\*', Mul)
    t_div    = LexTok(r'\/', Div)

    t_num    = LexTok(r'[0-9]+', Num, float)
    t_blank  = LexTok(r' +', Blank, discard=True)

    root = [t_plus, t_minus, t_lparen, t_num, 
    t_blank, t_rparen, t_mul, t_div]

class CalcGrammar(Grammar):
    # The token patterns when matched them become
    # ParseTree objects which have a type.
    r_paren = Rule(LP, Num, RP, type=Num)
    r_div   = Rule(Num, Div, Num, type=Num)
    r_mul   = Rule(Num, Mul, Num, type=Num)
    o_div   = Rule(Div)
    o_mul   = Rule(Mul)

    r_plus  = Rule(Num, Plus, Num, type=Num, up=(o_mul, o_div))
    r_minus = Rule(Num, Minus, Num, type=Num, up=(o_mul, o_div))

    # The final structure that is consumed. Once it is
    # consumed then the process stops.
    r_done  = Rule(Sof, Num, Eof)

    root = [r_paren, r_plus, r_minus, r_mul, r_div, r_done]

# The handles mapped to the patterns to compute the expression result.
def plus(expr, sign, term):
    return expr.val() + term.val()

def minus(expr, sign, term):
    return expr.val() - term.val()

def div(term, sign, factor):
    return term.val()/factor.val()

def mul(term, sign, factor):
    return term.val() * factor.val()

def paren(left, expression, right):
    return expression.val()

def done(sof, num, eof):
    print('Result:', num.val())
    return num.val()

if __name__ == '__main__':
    data = '2 * 5 + 10 -(2 * 3 - 10 )+ 30/(1-3+ 4* 10 + (11/1))' 

    lexer  = Lexer(CalcTokens)
    tokens = lexer.feed(data)
    eacc   = Eacc(CalcGrammar)
    
    # Link the handles to the patterns.
    eacc.add_handle(CalcGrammar.r_plus, plus)
    eacc.add_handle(CalcGrammar.r_minus, minus)
    eacc.add_handle(CalcGrammar.r_div, div)
    eacc.add_handle(CalcGrammar.r_mul, mul)
    eacc.add_handle(CalcGrammar.r_paren, paren)
    eacc.add_handle(CalcGrammar.r_done, done)
    
    ptree = eacc.build(tokens)
    ptree = list(ptree)

The defined rule below fixes precedence in the above ambiguous grammar.

    r_plus  = Rule(Num, Plus, Num, type=Num, up=(o_mul, o_div))

The above rule will be matched only if the below rules aren't matched ahead.

    o_div   = Rule(Div)
    o_mul   = Rule(Mul)

In case the above rule is matched then the result has type Num it will be rematched against the existing rules and so on.

When a mathematical expression is well formed it will result to the following structure.

Sof Num Eof

Which is matched by the rule below.

    r_done  = Rule(Sof, Num, Eof)

That rule is mapped to the handle below. It will merely print the resulting value.

def done(sof, num, eof):
    print('Result:', num.val())
    return num.val()

The Sof and Eof are start of file and end of file tokens. These are automatically inserted by the parser.

In case it is not a valid mathematical expression then it raises an exception. When a given document is well formed, the defined rules will consume it entirely.

The lexer is really flexible it can handle some interesting cases in a short and simple manner.

from eacc.lexer import XSpec, Lexer, SeqTok, LexTok, LexSeq
from eacc.token import Keyword, Identifier, RP, LP, Colon, Blank

class KeywordTokens(XSpec):
    t_if = LexSeq(SeqTok(r'if', type=Keyword),
    SeqTok(r'\s+', type=Blank))

    t_blank  = LexTok(r' +', type=Blank)
    t_lparen = LexTok(r'\(', type=LP)
    t_rparen = LexTok(r'\)', type=RP)
    t_colon  = LexTok(r'\:', type=Colon)

    # Match identifier only if it is not an if.
    t_identifier = LexTok(r'[a-zA-Z0-9]+', type=Identifier)

    root = [t_if, t_blank, t_lparen, 
    t_rparen, t_colon, t_identifier]

lex = Lexer(KeywordTokens)
data = 'if ifnum: foobar()'
tokens = lex.feed(data)
print('Consumed:', list(tokens))

That would output:

Consumed: [Keyword('if'), Blank(' '), Identifier('ifnum'), Colon(':'),
Blank(' '), Identifier('foobar'), LP('('), RP(')')]

The above example handles the task of tokenizing keywords correctly. The SeqTok class works together with LexSeq to extract the tokens based on a given regex while LexNode works on its own to extract tokens that do not demand a lookahead step.

Install

Note: Work with python3 only.

pip install eacc

Documentation

You might also like...
Sms Bomber, Tool Encryptor
Sms Bomber, Tool Encryptor

ɴᴏʙɪᴛᴀシ︎ ғᴏʀ ᴀɴʏ ʜᴇʟᴘシ︎ Install pkg install git -y pkg install python -y pip install requests git clone https://github.com/AK27HVAU/akash Run cd Akash

JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates.
JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates.

JTEX JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates. This package uses Jinja2 as the template engine with

Żmija is a simple universal code generation tool.

Żmija Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily mainta

epub2sphinx is a tool to convert epub files to ReST for Sphinx
epub2sphinx is a tool to convert epub files to ReST for Sphinx

epub2sphinx epub2sphinx is a tool to convert epub files to ReST for Sphinx. It uses Pandoc for converting HTML data inside epub files into ReST. It cr

Sphinx-performance - CLI tool to measure the build time of different, free configurable Sphinx-Projects
Sphinx-performance - CLI tool to measure the build time of different, free configurable Sphinx-Projects

CLI tool to measure the build time of different, free configurable Sphinx-Projec

A collection of simple python mini projects to enhance your python skills

A collection of simple python mini projects to enhance your python skills

Repository for learning Python (Python Tutorial)

Repository for learning Python (Python Tutorial) Languages and Tools 🧰 Overview 📑 Repository for learning Python (Python Tutorial) Languages and Too

A python package to avoid writing and maintaining duplicated python docstrings.

docstring-inheritance is a python package to avoid writing and maintaining duplicated python docstrings.

advance python series: Data Classes, OOPs, python

Working With Pydantic - Built-in Data Process ========================== Normal way to process data (reading json file): the normal princiople, it's f

Releases(v3.1.6)
Owner
Iury de oliveira gomes figueiredo
Iury de oliveira gomes figueiredo
Dev Centric Tools for Mkdocs Based Documentation

docutools MkDocs Documentation Tools For Developers This repo is providing a set of plugins for mkdocs material compatible documentation. It is meant

Axiros GmbH 14 Sep 10, 2022
Convenient tools for using Swagger to define and validate your interfaces in a Pyramid webapp.

Convenient tools for using Swagger to define and validate your interfaces in a Pyramid webapp.

Scott Triglia 64 Sep 18, 2022
Repository for tutorials, examples and starter scripts for using the MTU HPC cluster

MTU-HPC-Starter Repository for tutorials, examples and starter scripts for using the MTU HPC cluster Connecting to the MTU HPC cluster Within the coll

1 Jan 31, 2022
Easy OpenAPI specs and Swagger UI for your Flask API

Flasgger Easy Swagger UI for your Flask API Flasgger is a Flask extension to extract OpenAPI-Specification from all Flask views registered in your API

Flasgger 3.1k Jan 05, 2023
30 Days of google cloud leaderboard website

30 Days of Cloud Leaderboard This is a leaderboard for the students of Thapar, Patiala who are participating in the 2021 30 days of Google Cloud Platf

Developer Student Clubs TIET 13 Aug 25, 2022
charcade is a string manipulation library that can animate, color, and bruteforce strings

charcade charcade is a string manipulation library that can animate, color, and bruteforce strings. Features Animating text for CLI applications with

Aaron 8 May 23, 2022
Sphinx Theme Builder

Sphinx Theme Builder Streamline the Sphinx theme development workflow, by building upon existing standardised tools. and provide a: simplified packagi

Pradyun Gedam 23 Dec 26, 2022
A simple USI Shogi Engine written in python using python-shogi.

Revengeshogi My attempt at creating a USI Shogi Engine in python using python-shogi. Current State of Engine Currently only generating random moves us

1 Jan 06, 2022
A curated list of awesome mathematics resources

A curated list of awesome mathematics resources

Cyrille Rossant 6.7k Jan 05, 2023
🌱 Complete API wrapper of Seedr.cc

Python API Wrapper of Seedr.cc Table of Contents Installation How I got the API endpoints? Start Guide Getting Token Logging with Username and Passwor

Hemanta Pokharel 43 Dec 26, 2022
BakTst_Org is a backtesting system for quantitative transactions.

BakTst_Org 中文reademe:传送门 Introduction: BakTst_Org is a prototype of the backtesting system used for BTC quantitative trading. This readme is mainly di

18 May 08, 2021
API spec validator and OpenAPI document generator for Python web frameworks.

API spec validator and OpenAPI document generator for Python web frameworks.

1001001 249 Dec 22, 2022
Generates, filters, parses, and cleans data regarding the financial disclosures of judges in the American Judicial System

This repository contains code that gets data regarding financial disclosures from the Court Listener API main.py: contains driver code that interacts

Ali Rastegar 2 Aug 06, 2022
Documentation for GitHub Copilot

NOTE: GitHub Copilot discussions have moved to the Copilot Feedback forum. GitHub Copilot Welcome to the GitHub Copilot user community! In this reposi

GitHub 21.3k Dec 28, 2022
Swagger UI is a collection of HTML, JavaScript, and CSS assets that dynamically generate beautiful documentation from a Swagger-compliant API.

Introduction Swagger UI allows anyone — be it your development team or your end consumers — to visualize and interact with the API’s resources without

Swagger 23.2k Dec 29, 2022
Types that make coding in Python quick and safe.

Type[T] Types that make coding in Python quick and safe. Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type

Contains 17 Aug 01, 2022
Python document object mapper (load python object from JSON and vice-versa)

lupin is a Python JSON object mapper lupin is meant to help in serializing python objects to JSON and unserializing JSON data to python objects. Insta

Aurélien Amilin 24 Nov 09, 2022
A markdown wiki and dashboarding system for Datasette

datasette-notebook A markdown wiki and dashboarding system for Datasette This is an experimental alpha and everything about it is likely to change. In

Simon Willison 19 Apr 20, 2022
100 numpy exercises (with solutions)

100 numpy exercises This is a collection of numpy exercises from numpy mailing list, stack overflow, and numpy documentation. I've also created some p

Nicolas P. Rougier 9.5k Dec 30, 2022
A collection of online resources to help you on your Tech journey.

Everything Tech Resources & Projects About The Project Coming from an engineering background and looking to up skill yourself on a new field can be di

Mohamed A 396 Dec 31, 2022