Żmija is a simple universal code generation tool.

Overview

Zmija


GitHub code size in bytes GitHub issues GitHub last commit GitHub commit activity GitHub


Żmija

Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily maintainable.

It is intended to be used in embedded systems with limited resources, however it can be used anywhere else as well.


Usage

Żmija lets you define sections in your code where code is generated automatically in accordance to a provided Python script. Such a section typically looks like this:

/* ~ZMIJA.GENERATOR:
def declare(variables):
	pass
	
def init(variables):
	pass
	
def generate(variables):
	return ""
*/// ~ZMIJA.GENERATED_CODE:

// ~ZMIJA.END

The section is defined inside a multi-line comment as to not affect the compilation of the code it is located in. Żmija supports any languge, including those that have non C-style comment styles (hence it is universal).

This is what the same section might look like inside a Lua script, for example:

--[[ ~ZMIJA.GENERATOR:
def declare(variables):
	pass
	
def init(variables):
	pass
	
def generate(variables):
	return ""
]]-- ~ZMIJA.GENERATED_CODE:

-- ~ZMIJA.END

Each section consists of a declare-function, an init-function and a generate-function. Each function is provided with the variables argument, which is a dictionary that is intended to be used for the storage of variables.

The declare-function is executed first. It is meant for variable declaration and should only reference its own variables.

The init-function is meant to initialize variables, including those of other sections. It is executed only after the declare-function has been executed for all sections in the project.

The generate-function returns the generated code for the section it is located in. It is executed only after the declare and init-functions of all sections have been executed.

Note: Empty functions can safely be removed.


Run python3 ./src/zmija.py /path/to/your/project/directory/ to perform the code generation. The generated code will be placed between the ~ZMIJA.GENERATED_CODE: and the ~ZMIJA.END lines.


Help output

Zmija. Simple universal code generation.

Usage:
	zmija.py path
	zmija.py path -d | --delete
	zmija.py path -c | --check-only
	zmija.py path --config-path="path/to/config"
	zmija.py -h | --help
	
Options:
	-h --help         Show this screen.
	-d --delete       Delete all generated code.
	-c --check-only   Check Python code for syntax and runtime errors without writing the
	                  changes to file.
	-u --unsafe       Skip the test pass. May cause data loss if the Python code raises
	                  exceptions, but offers better performance. Use with caution.
	--config-path     Provides a path to a configuration file.
	
Config:
	file_filter(file_path)     A function intended to filter file paths. Any file path
	                           for which this function returns False is ignored.

Config

You can define a file path filter function inside a config file, such that certain files are ignored by Żmija.

Here's what an example config file may look like:

def file_filter(file_path):
	return file_path.endswith('.cpp') or file_path.endswith('.h')

The file path of the config file needs to be supplied using the --config-file argument, like so:

python3 ./src/zmija.py /path/to/your/project/directory/ --config-file="/path/to/your/config/file"


Example

Say you have two modules, a ButtonController and a LedController. You would like to implement the observer pattern to allow the ButtonController to communicate with the LedController without depending on it.

The following C++ code implements this. It is a simple example where pressing the button toggles the LED.

register_callback([this]() { toggle_led(); }); } int main() { button_controller = new ButtonController(); led_controller = new LedController(); button_controller->on_button_pressed(); return 0; } ">
#include <stdio.h>
#include <vector>
#include <functional>

// This would typically go into .h files:
struct ButtonController {
private:
    // Callbacks are functions that will be called
    // when the button is pressed. Notice how the
    // vector is constructed at runtime and held in
    // RAM.
    std::vector
   <
   void()>> callbacks;


   public:
    
   void 
   on_button_pressed();
    
   void 
   register_callback(std::function<
   void()> cb);
};


   struct 
   LedController {

   public:
    
   void 
   toggle_led();

    
   LedController();
};




   // This would typically go into .cpp files:
ButtonController *button_controller;
LedController *led_controller;


   // This function is meant to be automatically

   // called whenever a button is pressed.

   void 
   ButtonController::on_button_pressed() {
    
   // call all registered callbacks
    
   for (
   auto &cb : callbacks) 
   cb();
}


   // This function is meant to be called by other

   // modules that would like to react to button

   // presses.

   void 
   ButtonController::register_callback(std::function<
   void()> cb) {
    callbacks.
   push_back(cb);
}



   void 
   LedController::toggle_led() {
    
   printf(
   "LED toggled.\n");
}


   LedController::LedController() {
    
   // Registering a new callback consumes precious RAM.
    button_controller->
   register_callback([
   this]() {
        
   toggle_led();
    });
}


   int 
   main() {
    button_controller = 
   new 
   ButtonController();
    led_controller = 
   new 
   LedController();

    button_controller->
   on_button_pressed();

    
   return 
   0;
}
  

Calling the main() function will print LED toggled. to the console, as intended.

However, the ButtonController's callbacks vector is built during runtime and held in RAM. This causes an unnecessary overhead regarding both memory usage and execution speed.

Since the registered callbacks do not change after they have been registered, it may be beneficial to register them during compile time instead.


The following C++ code attempts to achieve this by using Żmija to generate the callbacks during compile time:

toggle_led();") def generate(variables): # Nothing to do. This function can safely be removed. return '' */// ~ZMIJA.GENERATED_CODE: // ~ZMIJA.END } int main() { button_controller = new ButtonController(); led_controller = new LedController(); button_controller->on_button_pressed(); return 0; } ">
#include <stdio.h>

// This would typically go into .h files:
struct ButtonController {
public:
	void on_button_pressed();
};

struct LedController {
public:
	void toggle_led();

	LedController();
};



// This would typically go into .cpp files:
ButtonController *button_controller;
LedController *led_controller;

// This function is meant to be automatically
// called whenever a button is pressed.
void ButtonController::on_button_pressed() {
	/* ~ZMIJA.GENERATOR:
	def declare(variables):
		# Declare a new list called "on_button_pressed".
		# This list will contain calls to callback functions
		# in string form.
		variables["on_button_pressed"] = []
		
	def init(variables):
		# Nothing to do. This function can safely be removed.
		pass
		
	def generate(variables):
		# Return a string containing all callback calls,
		# separated by a newline character.
		return "\n".join(variables["on_button_pressed"])
	*/// ~ZMIJA.GENERATED_CODE:
	
	// ~ZMIJA.END
}


void LedController::toggle_led() {
	printf("LED toggled.\n");
}

LedController::LedController() {
	/* ~ZMIJA.GENERATOR:
	def declare(variables):
		# Nothing to do. This function can safely be removed.
		pass
	
	def init(variables):
		# Add a callback call in string form.
		# This string will be added to the ButtonController's 
		# generated code.
		variables["on_button_pressed"].append("led_controller->toggle_led();")
		
	def generate(variables):
		# Nothing to do. This function can safely be removed.
		return ''
	*/// ~ZMIJA.GENERATED_CODE:
	
	// ~ZMIJA.END
}

int main() {
	button_controller = new ButtonController();
	led_controller = new LedController();

	button_controller->on_button_pressed();

	return 0;
}

Let's run Żmija:

python3 ./src/zmija.py /path/to/your/project/directory/

This is what our newly generated .cpp file looks like now:

toggle_led(); // ~ZMIJA.END } void LedController::toggle_led() { printf("LED toggled.\n"); } LedController::LedController() { /* ~ZMIJA.GENERATOR: def declare(variables): # Nothing to do. This function can safely be removed. pass def init(variables): # Add a callback call in string form. # This string will be added to the ButtonController's # generated code. variables["on_button_pressed"].append("led_controller->toggle_led();") def generate(variables): # Nothing to do. This function can safely be removed. return '' */// ~ZMIJA.GENERATED_CODE: // ~ZMIJA.END } int main() { button_controller = new ButtonController(); led_controller = new LedController(); button_controller->on_button_pressed(); return 0; } ">
#include <stdio.h>

// This would typically go into .h files:
struct ButtonController {
public:
	void on_button_pressed();
};

struct LedController {
public:
	void toggle_led();

	LedController();
};



// This would typically go into .cpp files:
ButtonController *button_controller;
LedController *led_controller;

// This function is meant to be automatically
// called whenever a button is pressed.
void ButtonController::on_button_pressed() {
	/* ~ZMIJA.GENERATOR:
	def declare(variables):
		# Declare a new list called "on_button_pressed".
		# This list will contain calls to callback functions
		# in string form.
		variables["on_button_pressed"] = []
		
	def init(variables):
		# Nothing to do. This function can safely be removed.
		pass
		
	def generate(variables):
		# Return a string containing all callback calls,
		# separated by a newline character.
		return "\n".join(variables["on_button_pressed"])
	*/// ~ZMIJA.GENERATED_CODE:
	led_controller->toggle_led();
	// ~ZMIJA.END
}


void LedController::toggle_led() {
	printf("LED toggled.\n");
}

LedController::LedController() {
	/* ~ZMIJA.GENERATOR:
	def declare(variables):
		# Nothing to do. This function can safely be removed.
		pass
	
	def init(variables):
		# Add a callback call in string form.
		# This string will be added to the ButtonController's 
		# generated code.
		variables["on_button_pressed"].append("led_controller->toggle_led();")
		
	def generate(variables):
		# Nothing to do. This function can safely be removed.
		return ''
	*/// ~ZMIJA.GENERATED_CODE:
	
	// ~ZMIJA.END
}

int main() {
	button_controller = new ButtonController();
	led_controller = new LedController();

	button_controller->on_button_pressed();

	return 0;
}

As you can see, Żmija has generated the led_controller->toggle_led();-line, just as intended.

Owner
Adrian Samoticha
Adrian Samoticha
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

555 Jan 02, 2023
Grokking the Object Oriented Design Interview

Grokking the Object Oriented Design Interview

Tusamma Sal Sabil 2.6k Jan 08, 2023
A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification)..

apispec A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification). Features Supports th

marshmallow-code 1k Jan 01, 2023
The blazing-fast Discord bot.

Wavy Wavy is an open-source multipurpose Discord bot built with pycord. Wavy is still in development, so use it at your own risk. Tools and services u

Wavy 7 Dec 27, 2022
An awesome Data Science repository to learn and apply for real world problems.

AWESOME DATA SCIENCE An open source Data Science repository to learn and apply towards solving real world problems. This is a shortcut path to start s

Academic.io 20.3k Jan 09, 2023
Canonical source repository for PyYAML

PyYAML - The next generation YAML parser and emitter for Python. To install, type 'python setup.py install'. By default, the setup.py script checks

The YAML Project 2k Jan 01, 2023
Feature Store for Machine Learning

Overview Feast is an open source feature store for machine learning. Feast is the fastest path to productionizing analytic data for model training and

Feast 3.8k Dec 30, 2022
Elliptic curve cryptography (ed25519) beginner tutorials in Python 3

ed25519_tutorials Elliptic curve cryptography (ed25519) beginner tutorials in Python 3 Instructions Just download the repo and read the tutorial files

6 Dec 27, 2022
Resource hub for Obsidian resources.

Obsidian Community Vault Welcome! This is an experimental vault that is maintained by the Obsidian community. For best results we recommend downloadin

Obsidian Community 320 Jan 02, 2023
Lightweight, configurable Sphinx theme. Now the Sphinx default!

What is Alabaster? Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx documentation system. It is Python 2+3 compatible. I

Jeff Forcier 670 Dec 19, 2022
Repository for learning Python (Python Tutorial)

Repository for learning Python (Python Tutorial) Languages and Tools 🧰 Overview 📑 Repository for learning Python (Python Tutorial) Languages and Too

Swiftman 2 Aug 22, 2022
Data-Scrapping SEO - the project uses various data scrapping and Google autocompletes API tools to provide relevant points of different keywords so that search engines can be optimized

Data-Scrapping SEO - the project uses various data scrapping and Google autocompletes API tools to provide relevant points of different keywords so that search engines can be optimized; as this infor

Vibhav Kumar Dixit 2 Jul 18, 2022
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Mayan EDMS is a document management system.

Mayan EDMS is a document management system. Its main purpose is to store, introspect, and categorize files, with a strong emphasis on preserving the contextual and business information of documents.

3 Oct 02, 2021
Obmovies - A short guide on setting up the system and environment dependencies required for ob's Movies database

Obmovies - A short guide on setting up the system and environment dependencies required for ob's Movies database

1 Jan 04, 2022
Python 3 wrapper for the Vultr API v2.0

Vultr Python Python wrapper for the Vultr API. https://www.vultr.com https://www.vultr.com/api This is currently a WIP and not complete, but has some

CSSNR 6 Apr 28, 2022
Practical Python Programming

Welcome! When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work pro

Dabeaz LLC 8.3k Jan 08, 2023
Yet Another MkDocs Parser

yamp Motivation You want to document your project. You make an effort and write docstrings. You try Sphinx. You think it sucks and it's slow -- I did.

Max Halford 10 May 20, 2022
Generates, filters, parses, and cleans data regarding the financial disclosures of judges in the American Judicial System

This repository contains code that gets data regarding financial disclosures from the Court Listener API main.py: contains driver code that interacts

Ali Rastegar 2 Aug 06, 2022
Searches a document for hash tags. Support multiple natural languages. Works in various contexts.

ht-getter Searches a document for hash tags. Supports multiple natural languages. Works in various contexts. This package uses a non-regex approach an

Rairye 1 Mar 01, 2022