[email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media" | PythonRepo" /> [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media" | PythonRepo">

This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Overview

Subreddit Analysis

This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by the Will?: Themes in online discussions of Fitness".

Installation and Requirements

You need to use Python 3.9, R 4.1.0 and git basically to run the scripts provided in this repo. For Ubuntu, to install essential dependencies:

sudo apt update
sudo apt install git python3.9 python3-pip
pip3 install virtualenv

Now clone this repo:

git clone https://github.com/gchochla/subreddit-analysis
cd subreddit-analysis

Create and activate a python environment to download the python requirements for the scripts:

~/.local/bin/virtualenv .venv
source .venv/bin/activate
pip install .

Usage

  1. Download a subreddit into a JSON that preserves the hierarchical structure of the posts by running:
python subreddit_analysis/subreddit_forest.py -r <SUBREDDIT_NAME>

where <SUBREDDIT_NAME> is the name of the subreddit after r/. You can also limit the number of submissions returned by setting -l <LIMIT>. The result can be found in the file <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.json.

  1. Transform this JSON to a rectangle (CSV), you can use:
python subreddit_analysis/json_forest_to_csv.py -fn <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.json

which creates <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.csv.

  1. To have a background corpus for control, you can download posts from the redditors that have posted in your desired subreddit from other subreddits:
python subreddit_analysis/user_baseline.py -fn <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.json -pl 200

where -pl specifies the number of posts per redditor to fetch (before filtering the desired subreddit). The file is saved as <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift-baseline-<pl>.json

  1. Transform that as well to a CSV:
python subreddit_analysis/json_baseline_to_csv.py -fn <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift-baseline-<pl>.json

which creates <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift-baseline-<pl>.csv.

  1. Create a folder, <ROOT>, move the subreddit CSV to it, and create another folder inside it named dictionaries that includes a file (note: the filename -- with a possible extensions -- will be used as the header of the loading) per distributed dictionary with space-separated words:
positive joy happy excited
  1. Tokenize CSVs using the r_scripts.

  2. Compute each post's loadings and write it into the CSV:

python subreddit_analysis/submission_loadings.py -d <ROOT> -doc <CSV_FILENAME>

where <CSV_FILENAME> is relative to <ROOT>.

  1. If annotations are available, which should be in a CSV with (at least) a column for the labels themselves and the ID of the post with a post_id header, you can use these to design a data-driven distributed dictionary. You can first train an RNN to create another annotation file with a predicted label for each post with:
python subreddit_analysis/rnn.py --doc_filename <SUBREDDIT_CSV> --label_filename <ANNOTATION_CSV> --label_column <LABEL_HEADER_1> <LABEL_HEADER_2> ... <LABEL_HEADER_N> --out_filename <NEW_ANNOTATION_CSV>

where you can provide multiple labels for multitasking, thought the model provides predictions only for the first specified label for now. Finally, if annotations are ordinal, you can get learned coefficients from Ridge Regression for each word in the vocabulary of all posts (in descending order of importance) using a tf-idf model to represent each document using:

python subreddit_analysis/bow_model.py --doc_filename <SUBREDDIT_CSV> --label_filename <ANY_ANNOTATION_CSV> --label_column <LABEL_HEADER> --out_filename <IMPORTANCE_CSV>
  1. Run analyses using r_scripts.
Owner
Georgios Chochlakis
ML researcher; CS PhD student @ Uni of Southern California
Georgios Chochlakis
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022