The goal of pandas-log is to provide feedback about basic pandas operations. It provides simple wrapper functions for the most common functions that add additional logs

Overview

pandas-log

Documentation Status Updates

The goal of pandas-log is to provide feedback about basic pandas operations. It provides simple wrapper functions for the most common functions, such as .query, .apply, .merge, .group_by and more.

Why pandas-log?

Pandas-log is a Python implementation of the R package tidylog, and provides a feedback about basic pandas operations.

The pandas has been invaluable for the data science ecosystem and usually consists of a series of steps that involve transforming raw data into an understandable/usable format. These series of steps need to be run in a certain sequence and if the result is unexpected it's hard to understand what happened. Pandas-log log metadata on each operation which will allow to pinpoint the issues.

Lets look at an example, first we need to load pandas-log after pandas and create a dataframe:

import pandas
import pandas_log

with pandas_log.enable():
    df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
                   "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                   "born": [pd.NaT, pd.Timestamp("1940-04-25"), pd.NaT]})

pandas-log will give you feedback, for instance when filtering a data frame or adding a new variable:

df.assign(toy=lambda x: x.toy.map(str.lower))
  .query("name != 'Batman'")

pandas-log can be especially helpful in longer pipes:

df.assign(toy=lambda x: x.toy.map(str.lower))
  .query("name != 'Batman'")
  .dropna()\
  .assign(lower_name=lambda x: x.name.map(str.lower))
  .reset_index()

For medium article go here

For a full walkthrough go here

Installation

pandas-log is currently installable from PyPI:

pip install pandas-log

Contributing

Follow contribution docs for a full description of the process of contributing to pandas-log.

Owner
Eyal Trabelsi
Enthusiastic Software Engineer 👷 with big passion for Python, ML and Performance Optimisations🐍🤖🦸🏼.
Eyal Trabelsi
A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner

swifter A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner. Blog posts Release 1.0.0 Fir

Jason Carpenter 2.2k Jan 04, 2023
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
High performance datastore for time series and tick data

Arctic TimeSeries and Tick store Arctic is a high performance datastore for numeric data. It supports Pandas, numpy arrays and pickled objects out-of-

Man Group 2.9k Dec 23, 2022
Pandas Google BigQuery

pandas-gbq pandas-gbq is a package providing an interface to the Google BigQuery API from pandas Installation Install latest release version via conda

Python for Data 348 Jan 03, 2023
The goal of pandas-log is to provide feedback about basic pandas operations. It provides simple wrapper functions for the most common functions that add additional logs

pandas-log The goal of pandas-log is to provide feedback about basic pandas operations. It provides simple wrapper functions for the most common funct

Eyal Trabelsi 206 Dec 13, 2022
sqldf for pandas

pandasql pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar

yhat 1.2k Jan 09, 2023
Koalas: pandas API on Apache Spark

pandas API on Apache Spark Explore Koalas docs » Live notebook · Issues · Mailing list Help Thirsty Koalas Devastated by Recent Fires The Koalas proje

Databricks 3.2k Jan 04, 2023
The easy way to write your own flavor of Pandas

Pandas Flavor The easy way to write your own flavor of Pandas Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-f

Zachary Sailer 260 Jan 01, 2023
Universal 1d/2d data containers with Transformers functionality for data analysis.

XPandas (extended Pandas) implements 1D and 2D data containers for storing type-heterogeneous tabular data of any type, and encapsulates feature extra

The Alan Turing Institute 25 Mar 14, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 01, 2023
A pure Python implementation of Apache Spark's RDD and DStream interfaces.

pysparkling Pysparkling provides a faster, more responsive way to develop programs for PySpark. It enables code intended for Spark applications to exe

Sven Kreiss 254 Dec 06, 2022
Modin: Speed up your Pandas workflows by changing a single line of code

Scale your pandas workflows by changing one line of code To use Modin, replace the pandas import: # import pandas as pd import modin.pandas as pd Inst

8.2k Jan 01, 2023
cuDF - GPU DataFrame Library

cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Built based on the Apache Arrow columnar memory format,

RAPIDS 5.2k Dec 31, 2022
Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second 🚀

What is Vaex? Vaex is a high performance Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular data

vaex io 7.7k Jan 01, 2023
A Python package for manipulating 2-dimensional tabular data structures

datatable This is a Python package for manipulating 2-dimensional tabular data structures (aka data frames). It is close in spirit to pandas or SFrame

H2O.ai 1.6k Jan 05, 2023