ThorFI: A Novel Approach for Network Fault Injection as a Service

Related tags

Networkingthorfi
Overview

MarineGEO circle logo

ThorFI: a Novel Approach for Network Fault Injection as a Service

This repo includes ThorFI, a novel fault injection solution for virtual networks in cloud computing infrastructures. ThorFI is designed to provide non-intrusive fault injection capabilities for a cloud tenant, and to isolate injections from interfering with other tenants on the infrastructure. Currently, ThorFI supports OpenStack cloud management platform. ThorFI details are reported into the paper "ThorFI: a Novel Approach for Network Fault Injection as a Service" accepted for publication in Elsevier Journal of Network and Computer Applications (JNCA).

Please, cite the following paper if you use the tools for your research:

@article{cotroneo2022thorfi,
  title={ThorFI: a Novel Approach for Network Fault Injection as a Service},
  author={Cotroneo, Domenico and De Simone, Luigi and Natella, Roberto},
  journal={arXiv preprint arXiv:TBD},
  year={2022}
}

Installing ThorFI

To run ThorFI, you need a working OpenStack deployment. To try the tool, we suggest installing OpenStack on a virtual machine, by adopting an all-in-one deployment (all OpenStack services are deployed within the same VM). You can refer to the following tutorial about installing an OpenStack all-in-one deployment on CentOS: https://github.com/dessertlab/OpenStack-Fault-Injection-Environment/blob/7b1dea8afb342d2087cd3e1da555ef0e66b94258/INSTALL.md. On Ubuntu, you can use DevStack (https://docs.openstack.org/devstack/latest/).

Depending on your OpenStack deployment, you need to install the following pre-requisites on the Controller, Compute, and Network nodes (see also https://docs.openstack.org/neutron/latest/admin/deploy.html).

  • On Ubuntu 18.04:
# apt-get install python-pip
# pip2 install -r /path/to/ThorFI/requirements.txt
# pip2 install decorator==4.4.1 pyrsistent==0.14.0 python-keystoneclient python-novaclient python-neutronclient python-glanceclient python-heatclient
  • On CentOS 7:
# yum -y install epel-release
# yum -y install python-pip
# pip2 install -r /path/to/ThorFI/requirements.txt
# pip2 install decorator==4.4.1 pyrsistent==0.14.0 python-keystoneclient python-novaclient python-neutronclient python-glanceclient python-heatclient

ThorFI can be installed by copying the folder on the nodes and executed as Python scripts. It can also be installed as bundled Python package. We provide a Makefile to generate executables for the ThorFI front-end and the ThorFI injector (thorfi_agent_app and injector_agent).

# pip2 install pyinstaller==3.4
# cd ~/path/to/ThorFI
# make 

Running ThorFI

In order to perform network fault injections, launch ThorFI front-end agent on the Controller node, and ThorFI injection agents on all Compute and Network nodes, following your OpenStack deployment.

In the following, we assume that the Controller node is named controller.example, with the OpenStack authentication service running at http://controller.example/identity/v3 . In order to run the ThorFI front-end agent, and to make it listen on a specifc port (e.g., 7777), use the following commands:

//On the Controller node

# iptables -I INPUT -p tcp --dport 7777 -j ACCEPT
# python thorfi_frontend_agent.py -i controller.example -p 7777 -a http://controller.example/identity/v3

On all target Compute and Network nodes, launch the ThorFI injection agents (default port is 11223):

//On the Compute and Network nodes

# iptables -I INPUT -p tcp --dport 11223 -j ACCEPT
# cd /path/to/ThorFI/
# python injector_agent_app/injector_agent.py -i node_ip

Please note that node_ip is the IP address of the Compute or Network host. If you run an all-in-one OpenStack deployment, the node_ip value must be set to 0.0.0.0.

The last (optional) step is to create the ThorFI OpenStack image (you need administrator permissions) in order to run the IPerf or JMeter workload generators. You can skip this step if you don't use the workload generators provided with ThorFI.

# cd /path/to/ThorFI
# openstack image create --disk-format qcow2 --container-format bare --public --file thorfi_image.qcow2 thorfi_image

Injection agents

The ThorFI injection agents need to be run into every Compute and Network node, according to the needs of cloud testers. These agents are REST-based applications that wait for injection requests from the ThorFI front-end agent. The ThorFI front-end agent generates a fault configuration to be sent to injection agents. In particular, the fault configuration includes all the thofi_items and it is built upon the target virtual resource identified by the cloud tester through the get_network_topology REST API invoked by using the ThorFI dashboard or by ThorFI client.

Each thofi_item describes a network interface, and it is characterized by an ID (in OpenStack the port ID), a location (i.e., the physical machine (Compute or Network node) that hosts the OpenStack network port), and a type (e.g., tap devices, veth pairs, Linux bridges, Open vSwitch bridges, and so on). The list of all the thorfi_items constitutes the thorfi_item_map returned from the internal method get_thorfi_item_list_by_id_type() called by the REST API inject_RESOURCE. After that, the REST API inject_RESOURCE invokes the do_injection_thorfi_item method that creates a mapping between the Network/Compute node IP (e.g., this info in the OpenStack implementation is kept into thorfi_item['binding:host_id']) and each target network device described by the thorfi_item, by also adding the information of the network namespace ID (if exists) to which the target network device belong. The structure will look like as in the following:

[
    Network NODE1 IP: {
                [
                    netns_ID1: NIC_ID1,
                    netns_ID2: NIC_ID2
                ]
    }
    Network NODE2 IP: {
                [
                    netns_ID3: NIC_ID4,
                    netns_ID4: NIC_ID5
                ]
    }
    Compute NODE1 IP: {
                [ netns_ID6: NIC_ID ]
    }
]

After that, the do_injection_thorfi_item method iterates over each node IP, to pass the list of target network devices to the proper injection agents listening for injection requests on that IP and a specific TCP port (by default 1234). Inside injection agents, the method inject_nics() is responsible for actually injecting the configured fault on the target NICs. This method uses the ip Linux tool to access (if needed) the proper network namespace linked with the target physical NIC. For example, assuming that the user selected a virtual router as the target for injecting a fault consisting of 100ms of delay. In the OpenStack implementation, a virtual router consists of at least two network interfaces; thus, the do_injection_thorfi_item will send two different requests to injection agents (likely targeting the same hosting Network node) with fault configuration. Besides the fault type, intensity, pattern, and injection timing, the fault target will contain two different NICs within the same network namespace ID. The inject_nics() will run two different injection commands by using both ip and tc user-space tool, as in the following:

ip netns exec qrouter-XXX tc qdisc add dev qg-XXX root netem delay 100ms
ip netns exec qrouter-XXX tc qdisc add dev qr-YYY root netem delay 100ms

Performing fault injections

Assuming both ThorFI front-end and the ThorFI injection agents are running, you can use the ThorFI client (thorfi_client.py) to invoke the ThorFI REST APIs in order to perform fault injections. In the following, we describe all input parameters that can be used:

-i, --thorfi_agent_host

    ThorFI front-end agent host (Controller node) IP (required).

-p, --thorfi_agent_port

    ThorFI front-end agent host (Controller node) port (required).

-a, --auth_url

    This is the authentication URL used for OpenStack authentication. Default is http://localhost:5000/v3.

-pi, --project_id

    The OpenStack project id on which ThorFI front-end agent can retrieve the information about tenants.

-rt, --resource_type

    The target network resource type. In the OpenStack implementation network, subnet, router, floatingip, and port are the supported resource types.

-ri, --resource_id

    The target network resource ID.

-f, --fault_type

    The fault type to be injected. In the current implementation, ThorFI supports delay, loss, corrupt, duplicate, bottleneck fault types.

-fa, --fault_args

    The fault arguments to be specified according to the fault type. 
        - delay: the amount of delay in ms
        - loss: percentage of packet drop;
        - corrupt: the percentage of packet subject to random noise;
        - duplicate: the percentage of packets duplicated before queuing them.
        - bottleneck: the Token Bucket Filter (TBF) rate.

-prtime, --pre_injection_time

-itime, --injection_time

-pitime, --post_injection_time

    The pre-injection, injection, and post-injection time in seconds.

Injection of packet delays

In this example, we inject a delay of 1s on traffic on the network resource with ID 175aa2c7-0f5c-49f6-9c9e-4f4f9c2f589a. We set the duration of the pre-injection, injection, and post-injection phases respectively to use 0s, 5s, and 0s (fault injection is triggered immediately, and lasts for 5 seconds).

# python thorfi_client.py -i controller.example -p 7777 -a http://controller.example/identity/v3 -pi admin -d tenant -rt network -ri 175aa2c7-0f5c-49f6-9c9e-4f4f9c2f589a -f delay -fa 1000ms -prtime 0 -itime 5 -pitime 0

Injection of packet losses

In this example, we inject packet losses on 75% of the traffic flowing through the router resource with ID be88692c-d532-4e49-92eb-a948064d0a23. We use the default configuration for the injection timing (0s, 20s, and 0s, respectively for pre-injection, injection, and post-injection phases).

# python thorfi_client.py -i controller.example -p 7777 -a http://controller.example/identity/v3 -pi admin -d tenant -rt router -ri be88692c-d532-4e49-92eb-a948064d0a23 -f loss -fa '75%'

Injection of packet corruptions

In this example, we inject packet corruptions on 50% of the traffic flowing through the router resource with ID be88692c-d532-4e49-92eb-a948064d0a23. The corruption is a single-bit error at a random offset in the packet. We use the default configuration for the injection timing.

# python thorfi_client.py -i controller.example -p 7777 -a http://controller.example/identity/v3 -pi admin -d tenant -rt router -ri be88692c-d532-4e49-92eb-a948064d0a23 -f corrupt -fa '50%'

ThorFI API documentation

In the following, is reported the documentation of the main ThorFI APIs.

/get_network_topology

Method: POST

Description: This API retrieves information about virtual network resources that are potential targets for injections, including their topology and IDs. The virtual resources will be posted to dashboard that renders the obtained topology.

Error response messagge: 403, 501

Raises: No exceptions.

/start_tests

Method: POST

Description: Reads from ThorFI database the list of tests to execute for the specific user and checks for each test if it is in a 'completed' state; if not it executes the test by calling 'inject_RESOURCE' function according to the fault configuration

POST parameters:

  • pre_injection_time
  • injection_time
  • post_injection_time

The pre-injection, injection, and post-injection time in seconds.

  • campaign_name: Name of fault injection campaign to start

/stop_tests

Method: POST

Description: Tries to stop the current fault injection campaign.

POST parameters:

  • campaign_name: Name of fault injection campaign to stop

Error response messagge: 404, 501

/status_tests

Method: POST

Description: Gets current status of running fault injection campaign.

POST parameters:

  • campaign_name: Name of fault injection campaign to start

Error response messagge: 404

/inject_RESOURCE API class

The inject_RESOURCE APIs are used to request injection actions towards injection agents. Each API in this class is a POST with the following parameters:

  • thorfi_item_id
  • fault_pattern
  • fault_pattern_args
  • fault_target_traffic
  • fault_target_protocol
  • fault_target_dst_ports
  • fault_target_src_ports
  • fault_type
  • fault_args
  • pre_injection_time
  • injection_time
  • post_injection_time

The details about each parameter is specified in the section "Performing fault injections. In the following, the details about the APIs in this class.

/inject_network

Method: POST

Description: API for injecting faults into resource 'network' of neutron We perform injection for each port linked to the given network name.

Error response messagge: ERROR

Raises: ThorFINetworkNotFoundException, if a network resource is not found.

/inject_floatingip

Method: POST

Description: API for injecting faults into resource 'floatingip' of neutron. ThorFI performs injection for each port linked to the given network name.

Error response messagge: ERROR

Raises: ThorFIFloatingIPException, if a floatingip resource is not found.

/inject_subnet

Method: POST

Description: API for injecting faults into resource 'subnet' of neutron. ThorFI performs injection for each port linked to the linked 'network' resource for the 'subnet' name.

Error response messagge: ERROR

Raises: ThorFISubnetNotFoundException, if a network resource is not found.

/inject_router

Method: POST

Description: REST API for injecting faults into resource 'router' of neutron. ThorFI perform injection for each port linked to the given router name.

Error response messagge: ERROR

Raises: ThorFIRouterNotFoundException, if a router resource is not found.

/inject_port

Method: POST

Description: REST API for injecting faults into resource 'port' of neutron. ThorFI perform injection for the port specified in 'thorfi_item_id'.

Error response messagge: ERROR

Raises: ThorFIPortNotFoundException, if a port resource is not found.

Owner
DESSERT research lab (Federico II University of Naples, Italy)
DESSERT research lab (Federico II University of Naples, Italy)
CORS Bypass Proxy Cloud Function

CORS Bypass Proxy Cloud Function

Elayamani K 1 Oct 23, 2021
Simple self-hosted server to receive files from remote systems

Badtray This is a very simple self-hosted server to receive files from remote systems. This works similar to Bintray (RIP) and primarily designed to d

Alex Taradov 1 Nov 22, 2021
A simple tool to get information about IP

IP Info Tool Just a simple tool to get IP's information, it uses requests module to gather information about IP, if you dont have much knowledge about

0 Dec 01, 2021
Distribute a portion of your yield to other addresses 💙

YSHARE Distribute a portion of your yield to other addresses. How does it work Desposit your yToken or tokens into this contract Set the benificiaries

11 Nov 24, 2021
Python Program to connect to different VPN servers autoatically using Windscribe VPN.

AutomateVPN What is VPN ? VPN stands for Virtual Private Network , it is a technology that creates a safe and encrypted connectionover a less secure n

Vivek 1 Oct 27, 2021
forward several ports into a single port

port forwarding Multi-Input-Single-Output forward several ports into a single one this tool forwards packets from several ports into one single port.

Erfan Kheyrollahi QaroÄŸlu 3 Sep 11, 2021
stellar-add-guest is a small tool to generate a new guest for Stellar Wireless (Enterprise mode) in OmniVista 2500 hosted on OmniSwitch with AOS Release 8

stellar-add-guest is a small tool to generate a new guest for Stellar Wireless (Enterprise mode) in OmniVista 2500 hosted on OmniSwitch with AOS Release 8.

BennyE 3 Jan 24, 2022
test whether http(s) proxies actually hide your ip

Proxy anonymity I made this for other projects, to find working proxies. If it gets enough support and if i have time i might make it into a gui Repos

gxzs1337 1 Nov 09, 2021
An advanced real time threat intelligence framework to identify threats and malicious web traffic on the basis of IP reputation and historical data.

ARTIF is a new advanced real time threat intelligence framework built that adds another abstraction layer on the top of MISP to identify threats and malicious web traffic on the basis of IP reputatio

CRED 225 Dec 31, 2022
DEMO SOCKET AF INET SSL PYTHON

DEMO_SOCKET_AF_INET_SSL_PYTHON Python demo of socket family as AF_INET using TCP with SSL. Compatibility : macOS & GNU/Linux Network Topology style :

Enola 1 Jan 24, 2022
Python Scripts for Cisco Identity Services Engine (ISE)

A set of Python scripts to configure a freshly installed Cisco Identity Services Engine (ISE) for simple operation; in my case, a basic Cisco Software-Defined Access environment.

Roddie Hasan 9 Jul 19, 2022
Find information about an IP address, such as its location, ISP, hostname, region, country, and city.

Find information about an IP address, such as its location, ISP, hostname, region, country, and city. An IP address can be traced, tracked, and located.

Sachit Yadav 2 Jul 09, 2022
Whoisss is a website information gatharing Tool.

Whoisss Whoisss is a website information gatharing Tool. You can cse it to collect information about website. Usage apt-get update apt-get upgrade pkg

Md. Nur habib 2 Jan 23, 2022
A Python3 discord trojan, utilizing discord webhooks for sending information.

Vape-Lite-RAT A Python3 discord trojan, utilizing discord webhooks for sending information. What you do with this code / project / idea is non of my b

NightTab 12 Oct 15, 2022
An automatic reaction network generator for reactive molecular dynamics simulation.

ReacNetGenerator An automatic reaction network generator for reactive molecular dynamics simulation. ReacNetGenerator: an automatic reaction network g

Tong Zhu Research Group 35 Dec 14, 2022
Simple P2P application for sending files over open and forwarded network ports.

FileShareV2 A major overhaul to the V1 (now deprecated) FileShare application. V2 brings major improvements in both UI and performance. V2 is now base

Michael Wang 1 Nov 23, 2021
Domain To Api [ PYTHON ]

Domain To IP Usage You Open Terminal For Run The Program python ip.py Input & Output Input Your List e.g domain.txt Output ( For Save Output File )

It's Me Jafar 0 Dec 12, 2021
Tool for quickly gathering information from Shodan.io about the number of IPs which satisfy large number of different queries

TriOp Tool for quickly gathering information from Shodan.io about the number of IPs which satisfy large number of different queries For furt

Jan Kopriva 27 Nov 03, 2022
This repository contain sample code of gRPC Communication between Python and GoLang

This repository contain sample code of gRPC Communication between Python and GoLang, the Server is running on GoLang while Python is running the client

Abdullahi Muhammad 2 Nov 29, 2021
Keep your application settings in sync (OS X/Linux)

Mackup Keep your application settings in sync. Table of content Quickstart Usage What does it do Bullsh*t, what does it really do to my files Supporte

Laurent Raufaste 12.8k Jan 08, 2023