A Prometheus Python client library for asyncio-based applications

Overview
https://github.com/claws/aioprometheus/workflows/Python%20Package%20Workflow/badge.svg?branch=master https://readthedocs.org/projects/aioprometheus/badge/?version=latest

aioprometheus

aioprometheus is a Prometheus Python client library for asyncio-based applications. It provides metrics collection and serving capabilities, supports multiple data formats and pushing metrics to a gateway.

The project documentation can be found on ReadTheDocs.

Install

$ pip install aioprometheus

A Prometheus Push Gateway client and ASGI service are also included, but their dependencies are not installed by default. You can install them alongside aioprometheus by running:

$ pip install aioprometheus[aiohttp]

Prometheus 2.0 removed support for the binary protocol, so in version 20.0.0 the dependency on prometheus-metrics-proto, which provides binary support, is now optional. If you want binary response support, for use with an older Prometheus, you will need to specify the 'binary' optional extra:

$ pip install aioprometheus[binary]

Multiple optional dependencies can be listed at once, such as:

$ pip install aioprometheus[aiohttp,binary]

Example

The example below shows a single Counter metric collector being created and exposed via the optional aiohttp service endpoint.

#!/usr/bin/env python
"""
This example demonstrates how a single Counter metric collector can be created
and exposed via a HTTP endpoint.
"""
import asyncio
import socket
from aioprometheus import Counter, Service


if __name__ == "__main__":

    async def main(svr: Service) -> None:

        events_counter = Counter(
            "events", "Number of events.", const_labels={"host": socket.gethostname()}
        )
        svr.register(events_counter)
        await svr.start(addr="127.0.0.1", port=5000)
        print(f"Serving prometheus metrics on: {svr.metrics_url}")

        # Now start another coroutine to periodically update a metric to
        # simulate the application making some progress.
        async def updater(c: Counter):
            while True:
                c.inc({"kind": "timer_expiry"})
                await asyncio.sleep(1.0)

        await updater(events_counter)

    loop = asyncio.get_event_loop()
    svr = Service()
    try:
        loop.run_until_complete(main(svr))
    except KeyboardInterrupt:
        pass
    finally:
        loop.run_until_complete(svr.stop())
    loop.close()

In this simple example the counter metric is tracking the number of while loop iterations executed by the updater coroutine. In a realistic application a metric might track the number of requests, etc.

Following typical asyncio usage, an event loop is instantiated first then a metrics service is instantiated. The metrics service is responsible for managing metric collectors and responding to metrics requests.

The service accepts various arguments such as the interface and port to bind to. A collector registry is used within the service to hold metrics collectors that will be exposed by the service. The service will create a new collector registry if one is not passed in.

A counter metric is created and registered with the service. The service is started and then a coroutine is started to periodically update the metric to simulate progress.

This example and demonstration requires some optional extra to be installed.

$ pip install aioprometheus[aiohttp,binary]

The example script can then be run using:

(venv) $ cd examples
(venv) $ python simple-example.py
Serving prometheus metrics on: http://127.0.0.1:5000/metrics

In another terminal fetch the metrics using the curl command line tool to verify they can be retrieved by Prometheus server.

By default metrics will be returned in plan text format.

$ curl http://127.0.0.1:5000/metrics
# HELP events Number of events.
# TYPE events counter
events{host="alpha",kind="timer_expiry"} 33

Similarly, you can request metrics in binary format, though the output will be hard to read on the command line.

$ curl http://127.0.0.1:5000/metrics -H "ACCEPT: application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited"

The metrics service also responds to requests sent to its / route. The response is simple HTML. This route can be useful as a Kubernetes /healthz style health indicator as it does not incur any overhead within the service to serialize a full metrics response.

$ curl http://127.0.0.1:5000/
<html><body><a href='/metrics'>metrics</a></body></html>

The aioprometheus package provides a number of convenience decorator functions that can assist with updating metrics.

The examples directory contains many examples showing how to use the aioprometheus package. The app-example.py file will likely be of interest as it provides a more representative application example than the simple example shown above.

Examples in the examples/frameworks directory show how aioprometheus can be used within various web application frameworks without needing to create a separate aioprometheus.Service endpoint to handle metrics. The FastAPI example is shown below.

#!/usr/bin/env python
"""
Sometimes you may not want to expose Prometheus metrics from a dedicated
Prometheus metrics server but instead want to use an existing web framework.

This example uses the registry from the aioprometheus package to add
Prometheus instrumentation to a FastAPI application. In this example a registry
and a counter metric is instantiated and gets updated whenever the "/" route
is accessed. A '/metrics' route is added to the application using the standard
web framework method. The metrics route renders Prometheus metrics into the
appropriate format.

Run:

  $ pip install fastapi uvicorn
  $ uvicorn fastapi_example:app

"""

from aioprometheus import render, Counter, Registry
from fastapi import FastAPI, Header, Response
from typing import List


app = FastAPI()
app.registry = Registry()
app.events_counter = Counter("events", "Number of events.")
app.registry.register(app.events_counter)


@app.get("/")
async def hello():
    app.events_counter.inc({"path": "/"})
    return "hello"


@app.get("/metrics")
async def handle_metrics(response: Response, accept: List[str] = Header(None)):
    content, http_headers = render(app.registry, accept)
    return Response(content=content, media_type=http_headers["Content-Type"])

License

aioprometheus is released under the MIT license.

aioprometheus originates from the (now deprecated) prometheus python package which was released under the MIT license. aioprometheus continues to use the MIT license and contains a copy of the original MIT license from the prometheus-python project as instructed by the original license.

OpenAPI generated FastAPI server

OpenAPI generated FastAPI server This Python package is automatically generated by the OpenAPI Generator project: API version: 1.0.0 Build package: or

microbo 1 Oct 31, 2021
First API using FastApi

First API using FastApi Made this Simple Api to store and Retrive Student Data of My College Ncc-Bim To View All the endpoits Visit /docs To Run Local

Sameer Joshi 2 Jun 21, 2022
A Python pickling decompiler and static analyzer

Fickling Fickling is a decompiler, static analyzer, and bytecode rewriter for Python pickle object serializations. Pickled Python objects are in fact

Trail of Bits 162 Dec 13, 2022
Example of integrating Poetry with Docker leveraging multi-stage builds.

Poetry managed Python FastAPI application with Docker multi-stage builds This repo serves as a minimal reference on setting up docker multi-stage buil

Michael Oliver 266 Dec 27, 2022
sample web application built with FastAPI + uvicorn

SPARKY Sample web application built with FastAPI & Python 3.8 shows simple Flask-like structure with a Bootstrap template index.html also has a backgr

mrx 21 Jan 03, 2022
Recommend recipes based on what ingredients you have at home

🌱 MyChef 📦 Overview MyChef is an application that helps you decide what meal to make based on what you have at home. Simply enter in ingredients you

Logan Connolly 44 Nov 08, 2022
官方文档已经有翻译的人在做了,

FastAPI 框架,高性能,易学,快速编码,随时可供生产 文档:https://fastapi.tiangolo.com 源码:https://github.com/tiangolo/fastapi FastAPI 是一个现代、快速(高性能)的 Web 框架,基于标准 Python 类型提示,使用

ApacheCN 27 Nov 11, 2022
Lung Segmentation with fastapi

Lung Segmentation with fastapi This app uses FastAPI as backend. Usage for app.py First install required libraries by running: pip install -r requirem

Pejman Samadi 0 Sep 20, 2022
FastAPI Skeleton App to serve machine learning models production-ready.

FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre

268 Jan 01, 2023
An image validator using FastAPI.

fast_api_image_validator An image validator using FastAPI.

Kevin Zehnder 7 Jan 06, 2022
FastAPI Admin Dashboard based on FastAPI and Tortoise ORM.

FastAPI ADMIN 中文文档 Introduction FastAPI-Admin is a admin dashboard based on fastapi and tortoise-orm. FastAPI-Admin provide crud feature out-of-the-bo

long2ice 1.6k Dec 31, 2022
Backend logic implementation for realworld with awesome FastAPI

Backend logic implementation for realworld with awesome FastAPI

Nik 2.2k Jan 08, 2023
Web Version of avatarify to democratize even further

Web-avatarify for image animations This is the code base for this website and its backend. This aims to bring technology closer to everyone, just by a

Carlos Andrés Álvarez Restrepo 66 Nov 09, 2022
A Nepali Dictionary API made using FastAPI.

Nepali Dictionary API A Nepali dictionary api created using Fast API and inspired from https://github.com/nirooj56/Nepdict. You can say this is just t

Nishant Sapkota 4 Mar 18, 2022
python fastapi example connection to mysql

Quickstart Then run the following commands to bootstrap your environment with poetry: git clone https://github.com/xiaozl/fastapi-realworld-example-ap

55 Dec 15, 2022
JSON-RPC server based on fastapi

Description JSON-RPC server based on fastapi: https://fastapi.tiangolo.com Motivation Autogenerated OpenAPI and Swagger (thanks to fastapi) for JSON-R

199 Dec 30, 2022
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
python template private service

Template for private python service This is a cookiecutter template for an internal REST API service, written in Python, inspired by layout-golang. Th

UrvanovCompany 15 Oct 02, 2022
Backend Skeleton using FastAPI and Sqlalchemy ORM

Backend API Skeleton Based on @tiangolo's full stack postgres template, with some things added, some things removed, and some things changed. This is

David Montague 18 Oct 31, 2022
MLServer

MLServer An open source inference server to serve your machine learning models. ⚠️ This is a Work in Progress. Overview MLServer aims to provide an ea

Seldon 341 Jan 03, 2023