Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
Built with Python programming language and QT library and Guess the number in three easy, medium and hard rolls

password-generator Built with Python programming language and QT library and Guess the number in three easy, medium and hard rolls Password generator

Amir Hussein Sharifnezhad 3 Oct 09, 2021
A Regex based linter tool that works for any language and works exclusively with custom linting rules.

renag Documentation Available Here Short for Regex (re) Nag (like "one who complains"). Now also PEGs (Parsing Expression Grammars) compatible with py

Ryan Peach 12 Oct 20, 2022
SimilarWeb for Team ACT v.0.0.1

SimilarWeb for Team ACT v.0.0.1 This module has been built to provide a better environment specifically for Similarweb in Team ACT. This module itself

Sunkyeong Lee 0 Dec 29, 2021
For radiometrically calibrating and PSF deconvolving IRIS data

irispreppy For radiometrically calibrating and PSF deconvolving IRIS data. I dislike how I need to own proprietary software (IDL) just to simply prepa

Aaron W. Peat 4 Nov 01, 2022
Python wrapper around Apple App Store Api

App Store Connect Api This is a Python wrapper around the Apple App Store Api : https://developer.apple.com/documentation/appstoreconnectapi So far, i

123 Jan 06, 2023
Download and archive entire usenet newsgroups over NNTP.

Usenet Archiving Tool This code is for archiving Usenet discussions, not downloading files. Newsgroup posts are saved under the authors name and email

Corey White 2 Dec 23, 2021
Exercicios de Python do Curso Em Video, apresentado por Gustavo Guanabara.

Exercicios Curso Em Video de Python Exercicios de Python do Curso Em Video, apresentado por Gustavo Guanabara. OBS.: Na data de postagem deste repo já

Lorenzo Ribeiro Varalo 0 Oct 21, 2021
A flexible free and unlimited python tool to translate between different languages in a simple way using multiple translators.

deep-translator Translation for humans A flexible FREE and UNLIMITED tool to translate between different languages in a simple way using multiple tran

Nidhal Baccouri 806 Jan 04, 2023
Projeto de Jogo de dados em Python 3 onde é definido o lado a ser apostado e número de jogadas, pontuando os acertos e exibindo se ganhou ou perdeu.

Jogo de DadoX Projeto de script que simula um Jogo de dados em Python 3 onde é definido o lado a ser apostado (1, 2, 3, 4, 5 e 6) ou se vai ser um núm

Estênio Mariano 1 Jul 10, 2021
Python pyside2 kütüphanesi ile oluşturduğum drone için yer kontrol istasyonu yazılımı.

Ground Control Station (Yer Kontrol İstasyonu) Teknofest yarışmasında yerlilik kısmında Yer Kontrol İstasyonu yazılımı seçeneği bulunuyordu. Bu yüzden

Emirhan Bülbül 4 May 14, 2022
Stop ask your soraka to ult you, just ult yourself

Lollo's auto-ultimate script Are you tired of your low elo friend who can't ult you with soraka when you ask for it? Use Useless Support and just ult

9 Oct 20, 2022
🦠 A simple and fast (< 200ms) API for tracking the global coronavirus (COVID-19, SARS-CoV-2) outbreak.

🦠 A simple and fast ( 200ms) API for tracking the global coronavirus (COVID-19, SARS-CoV-2) outbreak. It's written in python using the 🔥 FastAPI framework. Supports multiple sources!

Marius 1.6k Jan 04, 2023
My qtile config with a fresh-looking bar and pywal support

QtileConfig My qtile config with a fresh-looking bar and pywal support. Note: This is my first rice and first github repo. Please excuse my poor codin

Eden 4 Nov 10, 2021
India Today Astrology App

India Today Astrology App Introduction This repository contains the code for the Backend setup of the India Today Astrology app as a part of their rec

Pranjal Pratap Dubey 4 May 07, 2022
because rico hates uuid's

terrible-uuid-lambda because rico hates uuid's sub 200ms response times! Try it out here: https://api.mathisvaneetvelde.com/uuid https://api.mathisvan

Mathis Van Eetvelde 2 Feb 15, 2022
Repositório para estudo do airflow

airflow-101 Repositório para estudo do airflow Docker criado baseado no tutorial Exemplo de API da pokeapi Para executar clone o repo execute as confi

Gabriel (Gabu) Bellon 1 Nov 23, 2021
Mnemosyne: efficient learning with powerful digital flash-cards.

Mnemosyne: Optimized Flashcards and Research Project Mnemosyne is: a free, open-source, spaced-repetition flashcard program that helps you learn as ef

359 Dec 24, 2022
Lightweight library for accessing data and configuration

accsr This lightweight library contains utilities for managing, loading, uploading, opening and generally wrangling data and configurations. It was ba

appliedAI Initiative 7 Mar 09, 2022
This is a simple web interface for SimplyTranslate

SimplyTranslate Web This is a simple web interface for SimplyTranslate List of Instances You can find a list of instances here: SimplyTranslate Projec

4 Dec 14, 2022
System Design Assignments as part of Arpit's System Design Masterclass

System Design Assignments The repository contains a set of problem statements around Software Architecture and System Design as conducted by Arpit's S

Relog 1.1k Jan 09, 2023