Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
PyScaffold is a project generator for bootstrapping high quality Python packages

PyScaffold is a project generator for bootstrapping high quality Python packages, ready to be shared on PyPI and installable via pip. It is easy to use and encourages the adoption of the best tools a

PyScaffold 1.7k Jan 03, 2023
Cobalt Strike Sleep Python Bridge

This project is 'bridge' between the sleep and python language. It allows the control of a Cobalt Strike teamserver through python without the need for for the standard GUI client. NOTE: This project

Cobalt Strike 140 Jan 04, 2023
Appointment Tracker that allows user to input client information and update if needed.

Appointment-Tracker Appointment Tracker allows an assigned admin to input client information regarding their appointment and their appointment time. T

IS Coding @ KSU 1 Nov 30, 2021
EFB Docker image with efb-telegram-master and efb-wechat-slave

efb-wechat-docker EFB Docker image with efb-telegram-master and efb-wechat-slave Features Container run by non-root user. Support add environment vari

Haukeng 1 Nov 10, 2022
This repository is an archive of emails that are sent by the awesome Quincy Larson every week.

Awesome Quincy Larson Email Archive This repository is an archive of emails that are sent by the awesome Quincy Larson every week. If you fi

Sourabh Joshi 912 Jan 05, 2023
Yet another basic python package.

ironmelts A basic python package. Easy to use. Minimum requirements. Installing Linux python3 -m pip install -U ironmelts macOS python3 -m pip install

IRONMELTS 1 Oct 26, 2021
Python MapReduce library written in Cython.

Python MapReduce library written in Cython. Visit us in #hadoopy on freenode. See the link below for documentation and tutorials.

Brandyn White 243 Sep 16, 2022
Rick Astley Language is a rick roll oriented, dynamic, strong, esoteric programming language.

Rick Roll Language / Rick Astley Language A rick roll oriented, dynamic, strong, esoteric programming language. Prolegomenon The reasons that I made t

Rick Roll Programming Language 658 Jan 09, 2023
Opensource Desktop application for kenobi.

Kenobi-Server WIP Opensource desktop application for Kenobi. Download the apple watch app to get started. What is this repo? It's repo for the opensou

Aayush 9 Oct 08, 2022
Restaurant-finder - Restaurant finder With Python

restaurant-finder APIs /restaurants query-params: a. filter: column based on whi

Kumar saurav 1 Feb 22, 2022
A totally unrealistic cell growth/reproduction simulation.

A totally unrealistic cell growth/reproduction simulation.

Andrien Wiandyano 1 Oct 24, 2021
BlueBorne Dockerized

BlueBorne Dockerized This is the repo to reproduce the BlueBorne kill-chain on Dockerized Android as described here, to fully understand the code you

SecSI 5 Sep 14, 2022
This python code will get requests from SET (The Stock Exchange of Thailand) a previously-close stock price and return it in Thai Baht currency using beautiful soup 4 HTML scrapper.

This python code will get requests from SET (The Stock Exchange of Thailand) a previously-close stock price and return it in Thai Baht currency using beautiful soup 4 HTML scrapper.

Andre 1 Oct 24, 2022
Auto Join Zoom Meeting

Auto-Join-Zoom-Meeting Join a zoom meeting with out filling in meeting id's or passcodes, one button for it all! Setup See attached excel document. MA

JareBear 1 Jan 25, 2022
PKU team for 2021 project 'Guangchangwu detection'.

PKU team for 2021 project 'Guangchangwu detection'.

Helin Wang 3 Feb 21, 2022
automate some stuff so I can be more noob

dota automate some stuff so I can be more noob This is a simple project, but one that I've wanted forever! I use pyautogui, time, smtplib and datetime

Aaron Allen 17 Oct 18, 2022
A variant caller for the GBA gene using WGS data

Gauchian: WGS-based GBA variant caller Gauchian is a targeted variant caller for the GBA gene based on a whole-genome sequencing (WGS) BAM file. Gauch

Illumina 16 Oct 13, 2022
Inacap - Programa para pasar las notas de inacap a una hoja de cálculo rápidamente.

Inacap Programa en python para obtener varios datos académicos desde inacap y subirlos directamente a una hoja de cálculo. Cómo funciona Primero que n

Gabriel Barrientos 0 Jul 28, 2022
Companion Web site for Fluent Python, Second Edition

Fluent Python, the site Source code and content for fluentpython.com. The site complements Fluent Python, Second Edition with extra content that did n

Fluent Python 49 Dec 08, 2022
Academic planner application designed for students and counselors.

Academic planner application designed for students and counselors.

Ali bagheri 2 Dec 31, 2021