Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
Width-customizer-for-streamlit-apps - Width customizer for Streamlit Apps

🎈 Width customizer for Streamlit Apps As of now, you can only change your Strea

Charly Wargnier 5 Aug 09, 2022
CHIP-8 interpreter written in Python

chip8py CHIP-8 interpreter written in Python Contents About Installation Usage License About CHIP-8 is an interpreted language developed during the 19

Robert Olaru 1 Nov 09, 2021
《赛马娘》(ウマ娘: Pretty Derby)辅助 🐎🖥 基于 auto-derby 可视化操作/设置 启动器 一键包

ok-derby 《赛马娘》(ウマ娘: Pretty Derby)辅助 🐎 🖥 基于 auto-derby 可视化操作/设置 启动器 一键包 便捷,好用的 auto_derby 管理器! 功能 支持客户端 DMM (前台) 实验性 安卓 ADB 连接(后台)开发基于 1080x1920 分辨率

秋葉あんず 90 Jan 01, 2023
Simple logger for Urbit pier size, with systemd timer template

urbit-piermon Simple logger for Urbit pier size, with systemd timer template. Syntax piermon.py -i [PATH TO PIER] -o [PATH TO OUTPUT CSV] systemd serv

1 Nov 07, 2021
A synchronous, single-threaded interface for starting processes on Linux

A synchronous, single-threaded interface for starting processes on Linux

Spencer Baugh 27 Jan 28, 2022
Aevsploit İçin Destekde Bulun Papara: 1427113016

Aevsploit İçin Destekde Bulun Papara: 1427113016 Toolu Geliştirmek İçin Fikirlerinizi Bekliyorum Telegram

9 Jun 07, 2022
Find functions without canary check (or similar)

Ghidra Check Protector Which non-trivial functions don't reference the stack canary checker (or other, user-defined function)? Place your cursor to th

buherator 3 Jan 17, 2022
Regular Expressions - Use regular expressions to detect date format

A list of all the resources used https://regex101.com/ - To test regex https://w

Ravika Nagpal 1 Jan 04, 2022
Adjust the white point, gamma or make your XDR display darker without losing HDR peak luminance or the ability to adjust display brightness

XDR Tuner Adjust the white point, gamma or make your XDR display darker without losing HDR peak luminance or the ability to adjust display brightness

François Simond 16 Dec 28, 2022
Python / C++ based particle reaction-diffusion simulator

ReaDDy (Reaction Diffusion Dynamics) is an open source particle based reaction-diffusion simulator that can be configured and run via Python. Currentl

ReaDDy 46 Dec 09, 2022
Simple yet flexible natural sorting in Python.

natsort Simple yet flexible natural sorting in Python. Source Code: https://github.com/SethMMorton/natsort Downloads: https://pypi.org/project/natsort

Seth Morton 712 Dec 23, 2022
Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources.

Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources. It provides the necessary user stream data and order book data for trading in a

litepresence 5 May 08, 2022
Ramadhan countdown - Simple daily reminder about upcoming Ramadhan

Ramadhan Countdown Bot Simple bot for displaying daily reminder about Islamic pr

Abdurrahman Shofy Adianto 1 Feb 06, 2022
Interactivity Lab: Household Pulse Explorable

Interactivity Lab: Household Pulse Explorable Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a cur

1 Feb 10, 2022
Some out-of-the-box hooks for pre-commit

pre-commit-hooks Some out-of-the-box hooks for pre-commit. See also: https://github.com/pre-commit/pre-commit Using pre-commit-hooks with pre-commit A

pre-commit 3.6k Dec 29, 2022
An example module hooking system, will be used in PySAMP.

An example module hooking system, will be used in PySAMP.

2 May 01, 2022
Nesse repositório serão armazenados os conteúdos de aula

Lets_Code_DS_Degree_Alunos Nesse repositório serão armazenados os conteúdos de aula Formato das aulas: Notebook de aula já vem comentado para reduzir

Patricia Bongiovanni Catandi 6 Jan 21, 2022
Telegram bot to upload media to telegra.ph

Telegraph @StarkTelegraphBot A star ⭐ from you means a lot to us ! Telegram bot to upload media to telegra.ph Usage Deploy to Heroku Tap on above butt

Stark Bots 24 Dec 29, 2022
A Python script to delete movies with a certain tag after a certain amount of days.

radarr_autodelete Simple script, which deletes movies with a specific tag after a certain amount of days Pip Packages pip3 install pyarr python-dotenv

7 Dec 06, 2022
This repository contains Python Projects for Beginners as well as for Intermediate Developers built by Contributors.

Python Projects {Open Source} Introduction The repository was built with a tree-like structure in mind, it contains collections of Python Projects. Mo

Gaurav Pandey 115 Apr 30, 2022