100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

Overview

100 pandas puzzles

Puzzles notebook

Solutions notebook

Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of pandas' power.

Since pandas is a large library with many different specialist features and functions, these excercises focus mainly on the fundamentals of manipulating data (indexing, grouping, aggregating, cleaning), making use of the core DataFrame and Series objects. Many of the excerises here are straightforward in that the solutions require no more than a few lines of code (in pandas or NumPy - don't go using pure Python!). Choosing the right methods and following best practices is the underlying goal.

The exercises are loosely divided in sections. Each section has a difficulty rating; these ratings are subjective, of course, but should be a seen as a rough guide as to how elaborate the required solution needs to be.

Good luck solving the puzzles!

* the list of puzzles is not yet complete! Pull requests or suggestions for additional exercises, corrections and improvements are welcomed.

Overview of puzzles

Section Name Description Difficulty
Importing pandas Getting started and checking your pandas setup Easy
DataFrame basics A few of the fundamental routines for selecting, sorting, adding and aggregating data in DataFrames Easy
DataFrames: beyond the basics Slightly trickier: you may need to combine two or more methods to get the right answer Medium
DataFrames: harder problems These might require a bit of thinking outside the box... Hard
Series and DatetimeIndex Exercises for creating and manipulating Series with datetime data Easy/Medium
Cleaning Data Making a DataFrame easier to work with Easy/Medium
Using MultiIndexes Go beyond flat DataFrames with additional index levels Medium
Minesweeper Generate the numbers for safe squares in a Minesweeper grid Hard
Plotting Explore pandas' part of plotting functionality to see trends in data Medium

Setting up

To tackle the puzzles on your own computer, you'll need a Python 3 environment with the dependencies (namely pandas) installed.

One way to do this is as follows. I'm using a bash shell, the procedure with Mac OS should be essentially the same. Windows, I'm not sure about.

  1. Check you have Python 3 installed by printing the version of Python:
python -V
  1. Clone the puzzle repository using Git:
git clone https://github.com/ajcr/100-pandas-puzzles.git
  1. Install the dependencies (caution: if you don't want to modify any Python modules in your active environment, consider using a virtual environment instead):
python -m pip install -r requirements.txt
  1. Launch a jupyter notebook server:
jupyter notebook --notebook-dir=100-pandas-puzzles

You should be able to see the notebooks and launch them in your web browser.

Contributors

This repository has benefitted from numerous contributors, with those who have sent puzzles and fixes listed in CONTRIBUTORS.

Thanks to everyone who has raised an issue too.

Other links

If you feel like reading up on pandas before starting, the official documentation useful and very extensive. Good places get a broader overview of pandas are:

There are may other excellent resources and books that are easily searchable and purchaseable.

Owner
Alex Riley
Alex Riley
A python visualization of the A* path finding algorithm

A python visualization of the A* path finding algorithm. It allows you to pick your start, end location and make obstacles and then view the process of finding the shortest path. You can also choose

Kimeon 4 Aug 02, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
A tool to plot and execute Rossmos's Formula, that helps to catch serial criminals using mathematics

Rossmo Plotter A tool to plot and execute Rossmos's Formula using python, that helps to catch serial criminals using mathematics Author: Amlan Saha Ku

Amlan Saha Kundu 3 Aug 29, 2022
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022
nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation.

nptsne nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation and HSNE modelling. For more detail s

Biomedical Visual Analytics Unit LUMC - TU Delft 29 Jul 05, 2022
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。

COVID-19-Epidemic-Map 基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。 觉得项目还不错的话欢迎给一个star! 项目的源码可以正常运行,各个库的版本、数据库的建表语句、运行过程中遇到的坑以及解决方式在笔记.md中都

31 Dec 15, 2022
Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 456 Dec 25, 2022
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Nicolas Kruchten 512 Dec 26, 2022
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
Productivity Tools for Plotly + Pandas

Cufflinks This library binds the power of plotly with the flexibility of pandas for easy plotting. This library is available on https://github.com/san

Jorge Santos 2.7k Dec 30, 2022
Open-questions - Open questions for Bellingcat technical contributors

Open questions for Bellingcat technical contributors These are difficult, long-term projects that would contribute to open source investigations at Be

Bellingcat 234 Dec 31, 2022
An XLSX spreadsheet renderer for Django REST Framework.

drf-renderer-xlsx provides an XLSX renderer for Django REST Framework. It uses OpenPyXL to create the spreadsheet and returns the data.

The Wharton School 166 Dec 01, 2022
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022