vsketch is a Python generative art toolkit for plotters

Overview

vsketch

python Test Documentation Status

What is vsketch?

vsketch is a Python generative art toolkit for plotters with the following focuses:

  • Accessibility: vsketch is easy to learn and feels familiar thanks to its API strongly inspired from Processing.
  • Minimized friction: vsketch automates every part of the creation process (project initialisation, friction-less iteration, export to plotter-ready files) through a CLI tool called vsk and a tight integration with vpype.
  • Plotter-centric: vsketch is made for plotter users, by plotter users. It's feature set is focused on the peculiarities of this medium and doesn't aim to solve other problems.
  • Interoperability: vsketch plays nice with popular packages such as Numpy and Shapely, which are true enabler for plotter generative art.

vsketch is the sum of two things:

  • A CLI tool named vsk to automate every part of a sketch project lifecycle::
    • Sketch creation based on a customizable template.
    • Interactive rendering of your sketch with live-reload and custom parameters.
    • Batch export to SVG with random seed and configuration management as well as multiprocessing support.
  • An easy-to-learn API similar to Processing to implement your sketches.

This project is at an early the stage and needs contributions. You can help by providing feedback and improving the documentation.

Installing and Running the examples

The easiest way to get started is to obtain a local copy of vsketch's repository and run the examples:

$ git clone https://github.com/abey79/vsketch
$ cd vsketch

Create a virtual environment and activate it:

$ python3 -m venv venv
$ source venv/bin/activate

Install vsketch:

$ pip install .

You are read to run the examples:

$ vsk run examples/quick_draw

Additional examples may be found in the author's personal collection of sketches.

Getting started

This section is meant as a quick introduction of the workflow supported by vsketch. Check the documentation for a more complete overview.

Open a terminal and create a new project:

$ vsk init my_project

This will create a new project structure that includes everything you need to get started:

$ ls my_project
config
output
sketch_my_project.py

The sketch_my_project.py file contains a skeleton for your sketch. The config and output sub-directories are used by vsk to store configurations and output SVGs.

Open sketch_my_project.py in your favourite editor and modify it as follows:

None: vsk.vpype("linemerge linesimplify reloop linesort") if __name__ == "__main__": SchotterSketch.display() ">
import vsketch

class SchotterSketch(vsketch.SketchClass):
    def draw(self, vsk: vsketch.SketchClass) -> None:
        vsk.size("a4", landscape=False)
        vsk.scale("cm")

        for j in range(22):
            with vsk.pushMatrix():
                for i in range(12):
                    with vsk.pushMatrix():
                        vsk.rotate(0.03 * vsk.random(-j, j))
                        vsk.translate(
                            0.01 * vsk.randomGaussian() * j,
                            0.01 * vsk.randomGaussian() * j,
                        )
                        vsk.rect(0, 0, 1, 1)
                    vsk.translate(1, 0)
            vsk.translate(0, 1)

    def finalize(self, vsk: vsketch.Vsketch) -> None:
        vsk.vpype("linemerge linesimplify reloop linesort")

if __name__ == "__main__":
    SchotterSketch.display()

Your sketch is now ready to be run with the following command:

$ vsk run my_project

You should see this:

image

Congratulation, you just reproduced Georg Nees' famous artwork!

Wouldn't be nice if you could interactively interact with the script's parameters? Let's make this happen.

Add the following declaration at the top of the class:

class SchotterSketch(vsketch.SketchClass):
    columns = vsketch.Param(12)
    rows = vsketch.Param(22)
    fuzziness = vsketch.Param(1.0)
    
    # ...

Change the draw() method as follows:

    def draw(self, vsk: vsketch.Vsketch) -> None:
        vsk.size("a4", landscape=False)
        vsk.scale("cm")

        for j in range(self.rows):
            with vsk.pushMatrix():
                for i in range(self.columns):
                    with vsk.pushMatrix():
                        vsk.rotate(self.fuzziness * 0.03 * vsk.random(-j, j))
                        vsk.translate(
                            self.fuzziness * 0.01 * vsk.randomGaussian() * j,
                            self.fuzziness * 0.01 * vsk.randomGaussian() * j,
                        )
                        vsk.rect(0, 0, 1, 1)
                    vsk.translate(1, 0)
            vsk.translate(0, 1)

Hit ctrl-S/cmd-S to save and, lo and behold, corresponding buttons just appeared in the viewer without even needing to restart it! Here is how it looks with some more fuzziness:

image

Let's play a bit with the parameters until we find a combination we like, then hit the Save button and enter a "Best config" as name.

image

We just saved a configuration that we can load at any time.

Finally, being extremely picky, it would be nice to be able to generate ONE HUNDRED versions of this sketch with various random seeds, in hope to find the most perfect version for plotting and framing. vsk will do this for you, using all CPU cores available:

$ vsk save --config "Best config" --seed 0..99 my_project

You'll find all the SVG file in the project's output sub-directory:

image

Next steps:

  • Use vsk integrated help to learn about the all the possibilities (vsk --help).
  • Learn the vsketch API on the documentation's overview and reference pages.

Acknowledgments

Part of this project's documentation is inspired by or copied from the Processing project.

License

This project is licensed under the MIT license. The documentation is licensed under the CC BY-NC-SA 4.0 license. See the documentation for details.

A procedural Blender pipeline for photorealistic training image generation

BlenderProc2 A procedural Blender pipeline for photorealistic rendering. Documentation | Tutorials | Examples | ArXiv paper | Workshop paper Features

DLR-RM 1.8k Jan 02, 2023
Samila is a generative art generator written in Python

Samila is a generative art generator written in Python, Samila let's you create arts based on many thousand points. The position of every single point is calculated by a formula, which has random par

Sepand Haghighi 947 Dec 30, 2022
HyperBlend is a new type of hyperspectral image simulator based on Blender.

HyperBlend version 0.1.0 This is the HyperBlend leaf spectra simulator developed in Spectral Laboratory of University of Jyväskylä. You can use and mo

SILMAE 2 Jun 20, 2022
3D Reconstruction Software

Meshroom is a free, open-source 3D Reconstruction Software based on the AliceVision Photogrammetric Computer Vision framework. Learn more details abou

AliceVision 8.7k Jan 02, 2023
python binding for libvips using cffi

README PyPI package: https://pypi.python.org/pypi/pyvips conda package: https://anaconda.org/conda-forge/pyvips We have formatted docs online here: ht

libvips 467 Dec 30, 2022
MikuMikuRig是一款集生成控制器,自动导入动画,自动布料为一体的blender插件

Miku_Miku_Rig MikuMikuRig是一款集生成控制器,自动导入动画,自动布料为一体的blender插件。 MikumiKurig is a Blender plugin that can generates rig, automatically imports animations

小威廉伯爵 342 Dec 29, 2022
A tool for making simple-style text posters or wallpapers with high resolution.

PurePoster PurePoster is a fancy tool for making arbitrary-resolution, simple-style posters or wallpapers with text in center. Functionality PurePoste

Renyang Guan 4 Jul 09, 2022
An automated Comic Book downloader (cbr/cbz) for use with SABnzbd, NZBGet and torrents

Mylar Note that feature development has stopped as we have moved to Mylar3. EOL for this project is the end of 2020 and will no longer be supported. T

979 Dec 13, 2022
Napari simpleitk image processing

napari-simpleitk-image-processing (n-SimpleITK) Process images using SimpleITK in napari Usage Filters of this napari plugin can be found in the Tools

Robert Haase 11 Dec 19, 2022
Generates images of calendar month tables and can paste them onto suitable photos.

📆 calendizer README Generates images of calendar month tables and can paste them onto suitable photos. A quick way to make your own calendar for prin

Sean Ryan 2 Dec 14, 2022
Python avatar generator for absolute nerds

pagan Welcome to the Python Avatar Generator for Absolute Nerds. Current version: 0.4.3 View the change history here. Remember those good old days whe

David Bothe 280 Dec 16, 2022
Python class that generates pixel art from images

Python class that generates pixel art from images

Richard Nagyfi 1.4k Dec 29, 2022
New program to export a Blender model to the LBA2 model format.

LBA2 Blender to Model 2 This is a new program to export a Blender model to the LBA2 model format. This is also the first publicly released version of

2 Nov 30, 2022
Computer art based on joining transparent images

Computer Art There is no must in art because art is free. Introduction The following tutorial exaplains how to generate computer art based on a series

Computer Art 12 Jul 30, 2022
A QR Code encode and decode python module

A QR Code encode and decode python module

Fayas Noushad 4 Feb 10, 2022
Generate different types of random avatars.

avatar-generator Generate different types of random avatars. Requirements Python3 pytorch=1.6 cv2=3.4 tqdm 1. Github-like avatars python generate_gi

Ming 11 Apr 02, 2022
A python script for extracting/removing exif data from images by @AbirHasan2005

Image-Exif A Python script for extracting exif metadata from images. How to use? Using this script you can extract exif data from image and save in .c

Abir Hasan 13 Dec 16, 2022
Dynamic image server for web and print

Quru Image Server - dynamic imaging for web and print QIS is a high performance web server for creating and delivering dynamic images. It is ideal for

Quru 84 Jan 03, 2023
Extract the ISO 11146 beam size from an image file

laserbeamsize Simple and fast calculation of beam sizes from a single monochrome image based on the ISO 11146 method of variances. Some effort has bee

Scott Prahl 21 Jan 06, 2023
将位图转为彩色矢量 svg 图片

一个将位图描摹为彩色矢量 svg 图片的程序,是一个命令行工具,使用 Python 脚本实现,运行环境 Python3.8+。 ✨ 效果 以一个字帖图片为例,这是 png 格式的位图(370KB): 这是颜

Haujet Zhao 104 Dec 30, 2022