A Python interface between Earth Engine and xarray for processing weather and climate data

Overview

wxee

PyPI conda-forge Read the Docs Open in Colab Black code style GLP3 License

Demo downloading weather data to xarray using wxee.

What is wxee?

wxee was built to make processing gridded, mesoscale time series weather and climate data quick and easy by integrating the data catalog and processing power of Google Earth Engine with the flexibility of xarray, with no complicated setup required. To accomplish this, wxee implements convenient methods for data processing, aggregation, downloading, and ingestion.

Features

  • Time series image collections to xarray, NetCDF, or GeoTIFF in one line of code
  • Climatological means and temporal aggregation
  • Parallel processing for fast downloads

Install

Pip

pip install wxee

Conda

conda install -c conda-forge wxee

From Source

git clone https://github.com/aazuspan/wxee
cd wxee
make install

Quickstart

Setup

Once you have access to Google Earth Engine, just import and initialize ee and wxee.

import ee
import wxee

ee.Initialize()

Download Images

Download and conversion methods are extended to ee.Image and ee.ImageCollection using the wx accessor. Just import wxee and use the wx accessor.

xarray

ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").wx.to_xarray()

NetCDF

ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").wx.to_xarray(path="data/gridmet.nc")

GeoTIFF

ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").wx.to_tif()

Create a Time Series

Additional methods for processing image collections in the time dimension are available through the TimeSeries subclass. A TimeSeries can be created from an existing ee.ImageCollection...

col = ee.ImageCollection("IDAHO_EPSCOR/GRIDMET")
ts = col.wx.to_time_series()

Or instantiated directly just like you would an ee.ImageCollection!

ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET")

Aggregate Daily Data

Many weather datasets are in daily or hourly resolution. These can be aggregated to coarser resolutions using the aggregate_time method of the TimeSeries class.

ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET")
monthly_max = ts.aggregate_time(frequency="month", reducer=ee.Reducer.max())

Calculate Climatological Means

Long-term climatological means can be calculated using the climatology_mean method of the TimeSeries class.

ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET")
mean_clim = ts.climatology_mean(frequency="month")

Contribute

Bugs or feature requests are always appreciated! They can be submitted here.

Code contributions are also welcome! Please open an issue to discuss implementation, then follow the steps below. Developer setup instructions can be found in the docs.

Comments
  • Converting Half/3-hourly to daily and monthly

    Converting Half/3-hourly to daily and monthly

    Hi, I am wondering if wxee could convert half-hourly / 3-hourly data to daily/ monthly data for the following data sets:

    1. ee.ImageCollection("TRMM/3B42") (3-hourly precipitation)
    2. ee.ImageCollection("NASA/GPM_L3/IMERG_V06") (half-hourly)

    Thanking you.

    opened by surajitdb 5
  • `MergeError` when translating to `xarray`

    `MergeError` when translating to `xarray`

    Hi, @aazuspan!

    Just wanted to say that I love wxee! I'm using it to combine products from Earth Engine and Planetary Computer and that's amazing! I'm using it almost every day, but sometimes this error happens:

    ---------------------------------------------------------------------------
    MergeError                                Traceback (most recent call last)
    /tmp/ipykernel_1042/4012842980.py in <module>
          1 CLOUD_MASK = PCL_s2cloudless(S2_ee).map(PSL).map(PCSL).map(matchShadows).select("CLOUD_MASK")
    ----> 2 CLOUD_MASK_xarray = CLOUD_MASK.wx.to_xarray(scale = 20,crs = "EPSG:" + str(S2.epsg.data),region = ee_aoi)
    
    /srv/conda/envs/notebook/lib/python3.8/site-packages/wxee/collection.py in to_xarray(self, path, region, scale, crs, masked, nodata, num_cores, progress, max_attempts)
        135             )
        136 
    --> 137             ds = _dataset_from_files(files)
        138 
        139         # Mask the nodata values. This will convert int datasets to float.
    
    /srv/conda/envs/notebook/lib/python3.8/site-packages/wxee/utils.py in _dataset_from_files(files)
        120     das = [_dataarray_from_file(file) for file in files]
        121 
    --> 122     return xr.merge(das)
        123 
        124 
    
    /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/merge.py in merge(objects, compat, join, fill_value, combine_attrs)
        898         dict_like_objects.append(obj)
        899 
    --> 900     merge_result = merge_core(
        901         dict_like_objects,
        902         compat,
    
    /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/merge.py in merge_core(objects, compat, join, combine_attrs, priority_arg, explicit_coords, indexes, fill_value)
        633 
        634     prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)
    --> 635     variables, out_indexes = merge_collected(
        636         collected, prioritized, compat=compat, combine_attrs=combine_attrs
        637     )
    
    /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/merge.py in merge_collected(grouped, prioritized, compat, combine_attrs)
        238                 variables = [variable for variable, _ in elements_list]
        239                 try:
    --> 240                     merged_vars[name] = unique_variable(name, variables, compat)
        241                 except MergeError:
        242                     if compat != "minimal":
    
    /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/merge.py in unique_variable(name, variables, compat, equals)
        147 
        148     if not equals:
    --> 149         raise MergeError(
        150             f"conflicting values for variable {name!r} on objects to be combined. "
        151             "You can skip this check by specifying compat='override'."
    
    MergeError: conflicting values for variable 'CLOUD_MASK' on objects to be combined. You can skip this check by specifying compat='override'.
    

    It is weird because it is not something that happens all the time, and most of the times I just have to re-run the code and it works. So, I don't know exactly what the problem is xD

    Anyway, here I let you the error I got. I was trying to get a cloud mask in GEE and download it as a xarray. I aleady tried it again and now it works, but, as I said, I don't know why. It also happens with other datasets. I was downloading some Sentinel-2 data (just as it is, without any processing steps) and sometimes work, but sometimes it doesn't and I can't reproduce the error because when I re-run it, most of the times it works xD

    Ok, that was it!

    Thank you!

    bug 
    opened by davemlz 4
  • How to call a country using ee.Geometry.Polygon?

    How to call a country using ee.Geometry.Polygon?

    Hi Aaron, I am wondering how to call a country using ee.Geometry.Polygon in wxee or is there any other way? Since Google Fusion Tables is not supported any more on Earth Engine, is there a way out to call a country polygon?

    Thank you.

    opened by surajitdb 4
  • wxee crash in windows WSL linux system

    wxee crash in windows WSL linux system

    I have a code file to use wxee to convert ee image to xarray array data, and it ran successfully on Windows. But when I ran the same piece of code on Windows Subsystem for Linux (WSL) Ubuntu, it crashes.

    Example:

    import ee ee.Initialize() import wxee wxee.Initialize() myregion=ee.Geometry.LineString([[-84, 30], [-70, 45], [-70, 45], [-84, 30]]) cfsr=[] dem=ee.ImageCollection('NOAA/CFSV2/FOR6H').filter(ee.Filter.date('1996-02-14', '1996-02-19')).select(['u component_of_wind_height_above_ground'])

    etc=dem.wx.to_xarray(region=myregion,scale=2000)

    print(etc)

    The error was

    Requesting data: 0%| | 0/20 [00:00<?, ?it/s]malloc(): unsorted double linked list corrupted Aborted

    again, it ran successfully on Windows, but not on WSL.

    opened by fanqi203 3
  • EEException: Date: Parameter 'value' is required.

    EEException: Date: Parameter 'value' is required.

    I was trying to download a median image to xarray and encountered this error below. I understand that we need time series image collections, but wonder if there is a workaround for ee.Image? Thanks, Daniel

    EEException: Date: Parameter 'value' is required.
    
    stale 
    opened by Daniel-Trung-Nguyen 3
  • Specific points to xarray

    Specific points to xarray

    Dear Aaron Zuzpan

    Thank you very much for this wonderful package. I have in my assets a shp with 64 points, also locally as geojson. I tried following your instruction here , https://github.com/aazuspan/wxee/issues/28, to download sentinel-2 bands to xarray of those specifics 64 points. But, the total points depends of scale and region, being differents in number and localization of those 64. There is any way to download those specific points to xarray?.

    Thank in advance.

    Walter Pereira

    opened by wep69 3
  • NaN values in Sentinel 1 GRD scenes

    NaN values in Sentinel 1 GRD scenes

    i did the same with Sentinel 1 GRD scenes, the issue is some values are just converted as NaN, why such issue ??? So i am getting a major backscatter values as Nan, why such issue ?

    Originally posted by @ashishgitbisht in https://github.com/aazuspan/wxee/issues/46#issuecomment-1066781564

    question 
    opened by aazuspan 3
  • All parallel downloads fail with conda-forge installation

    All parallel downloads fail with conda-forge installation

    Issue

    Any parallel operations (specifically wxee.TimeSeries.wx.to_xarray()) will fail and may crash Python in a fresh install. On Linux the issue causes an immediate crash and "segmentation fault" message. On Windows it throws an SSL error, usually after downloading several images, or Python crashes silently. This happens on a clean install of wxee from conda-forge but has not happened in my development environment, so it is probably a package version or missing dependency issue.

    Temporary Workaround

    Setting num_cores to 1 (which disables multiprocessing) seems to resolve the issue but slows down downloads.

    bug 
    opened by aazuspan 3
  • Pickling fails with local functions (e.g. ee.Image.expression())

    Pickling fails with local functions (e.g. ee.Image.expression())

    Hi, @aazuspan!

    First of all, WOW! Your work with eexarray is amazing, keep it going! :rocket:

    I was using your dev repo to try to convert a S2 collection to xarray, and it works, but, when I compute a spectral index using eemont (that uses ee.Image.expression) it doesn't work:

    This works!

    import ee, eemont, eexarray
    
    ee.Initialize()
    
    tw = ee.Geometry.Point([10.4522,51.0792])
    bf = tw.buffer(500)
    xt = bf.bounds()
    
    S2 = ee.ImageCollection("COPERNICUS/S2_SR") \
        .filterBounds(xt) \
        .preprocess() \
        .map(lambda x: x.addBands(x.normalizedDifference(["B8","B4"]).rename("NDVI"))) \
        .limit(10) \
        .map(lambda x: x.clip(xt)) \
        .eex.resample_daily(reducer = ee.Reducer.median())
    
    S2eex = S2.eex.to_xarray(scale=10) 
    

    This doesn't work (using eemont)

    import ee, eemont, eexarray
    
    ee.Initialize()
    
    tw = ee.Geometry.Point([10.4522,51.0792])
    bf = tw.buffer(500)
    xt = bf.bounds()
    
    S2 = ee.ImageCollection("COPERNICUS/S2_SR") \
        .filterBounds(xt) \
        .preprocess() \
        .spectralIndices("NDVI") \
        .limit(10) \
        .map(lambda x: x.clip(xt)) \
        .eex.resample_daily(reducer = ee.Reducer.median())
    
    S2eex = S2.eex.to_xarray(scale=10) 
    

    This doesn't work (not using eemont)

    import ee, eemont, eexarray
    
    ee.Initialize()
    
    tw = ee.Geometry.Point([10.4522,51.0792])
    bf = tw.buffer(500)
    xt = bf.bounds()
    
    def addExpressionNDVI(x):
        params = {"N": x.select("B8"),"R": x.select("B4")}
        NDVI = x.expression("(N-R)/(N+R)",params).rename("NDVI")
        return x.addBands(NDVI)
    
    S2 = ee.ImageCollection("COPERNICUS/S2_SR") \
        .filterBounds(xt) \
        .preprocess() \
        .map(addExpressionNDVI) \
        .limit(10) \
        .map(lambda x: x.clip(xt)) \
        .eex.resample_daily(reducer = ee.Reducer.median())
    
    S2eex = S2.eex.to_xarray(scale=10) 
    

    Error

    AttributeError: Can't pickle local object 'Image.expression.<locals>.ReinterpretedFunction'
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-37-94ef9caa673d> in <module>
    ----> 1 S2eex = S2.eex.to_xarray(scale=10)
    
    ~/anaconda3/envs/gee/lib/python3.9/site-packages/eexarray/ImageCollection.py in to_xarray(self, path, region, scale, crs, masked, nodata, num_cores, progress, max_attempts)
         90             collection = self._rename_by_time()
         91 
    ---> 92             files = collection.eex.to_tif(
         93                 out_dir=tmp,
         94                 region=region,
    
    ~/anaconda3/envs/gee/lib/python3.9/site-packages/eexarray/ImageCollection.py in to_tif(self, out_dir, prefix, region, scale, crs, file_per_band, masked, nodata, num_cores, progress, max_attempts)
        198                 max_attempts=max_attempts,
        199             )
    --> 200             tifs = list(
        201                 tqdm(
        202                     p.imap(params, imgs),
    
    ~/anaconda3/envs/gee/lib/python3.9/site-packages/tqdm/std.py in __iter__(self)
       1183 
       1184         try:
    -> 1185             for obj in iterable:
       1186                 yield obj
       1187                 # Update and possibly print the progressbar.
    
    ~/anaconda3/envs/gee/lib/python3.9/multiprocessing/pool.py in next(self, timeout)
        868         if success:
        869             return value
    --> 870         raise value
        871 
        872     __next__ = next                    # XXX
    
    ~/anaconda3/envs/gee/lib/python3.9/multiprocessing/pool.py in _handle_tasks(taskqueue, put, outqueue, pool, cache)
        535                         break
        536                     try:
    --> 537                         put(task)
        538                     except Exception as e:
        539                         job, idx = task[:2]
    
    ~/anaconda3/envs/gee/lib/python3.9/multiprocessing/connection.py in send(self, obj)
        209         self._check_closed()
        210         self._check_writable()
    --> 211         self._send_bytes(_ForkingPickler.dumps(obj))
        212 
        213     def recv_bytes(self, maxlength=None):
    
    ~/anaconda3/envs/gee/lib/python3.9/multiprocessing/reduction.py in dumps(cls, obj, protocol)
         49     def dumps(cls, obj, protocol=None):
         50         buf = io.BytesIO()
    ---> 51         cls(buf, protocol).dump(obj)
         52         return buf.getbuffer()
         53 
    
    AttributeError: Can't pickle local object 'Image.expression.<locals>.ReinterpretedFunction'
    

    Versions

    • xarray 0.19.0
    • earthengine-api 0.1.277
    • eemont 0.2.5
    • python 3.9

    It seems to be something related specifically to that earthengine-api method, but if you can find a workaround, that would be amazing! :rocket:

    And again, thank you very much for eexarray!

    bug 
    opened by davemlz 3
  • Set default col and groupby kwargs (#57)

    Set default col and groupby kwargs (#57)

    Closes #57 by allowing user to the override default col="time" arg for static rgb plots. Also specifies a default groupby="time" kwarg for interactive plots.

    enhancement 
    opened by aazuspan 2
  • define scale in wx.to_xarray()

    define scale in wx.to_xarray()

    Hi, I have a Landsat time-series in epsg:4326 downloaded from the google earth engine that I am trying to convert to xarray. The area covers the entire Las Vegas. Using ds = landsat_ts.wx.to_xarray() resulted in a ds with coarse scale of 1 decimal degree. My question is how to define scale and crs parameters in the wx.to_xarray() function to get the raw Landsat's resolution of 30m? Thanks, Daniel

    Attributes: transform : (1.0, 0.0, -116.0, 0.0, -1.0, 37.0) crs : +init=epsg:4326 res : (1.0, 1.0) is_tiled : 1 nodatavals : (-32768.0,) scales : (1.0,) offsets : (0.0,) AREA_OR_POINT : Area TIFFTAG_RESOLUTIONUNIT : 1 (unitless) TIFFTAG_XRESOLUTION : 1 TIFFTAG_YRESOLUTION : 1

    opened by Daniel-Trung-Nguyen 2
  • Figure out feasibility of using `geedim` for downloading backend

    Figure out feasibility of using `geedim` for downloading backend

    geedim is a Python package that supports downloading EE images with automatic tiling to bypass file size limits. I've been wanting to improve the download system in wxee for a while (see #19), and using geedim might be a good way to do that with the added bonus of removing most of the low-level thread and tempfile management that causes a lot of headaches. Ideally, I would replace the entire image downloading system with geedim, both for to_tif and for to_xarray.

    It will be quite a bit of work just to figure out how feasible this is, so I'm going to start keeping track of and checking off potential incompatibilities below as I figure them out.

    Possible Issues

    • [ ] Parallelizing - geedim uses threads to download tiles of large images whereas wxee uses threads to download images within collections. I'll need to figure out the feasibility of parallelizing on both dimensions or else download speed would tank on large collections of small images, which is the primary focus of wxee.
    • [ ] Download progress - geedim tracks progress of image tiles whereas I need to track progress of images in collections (or both would be fine). I give separate progress bars for retrieving data (requesting the download URLs) and the download itself because the URL request can take a lot of time, and I don't think this will be possible with geedim.
    • [ ] Tempfiles - I don't believe geedim supports tempfile outputs, but that's typically what you want when converting to xarray. I don't want to have to manage files manually, so I'll need to think more about how this will work. Maybe just create temp directories and download into them?
    • [ ] File-per-band - geedim automatically sets filePerBand=False for all downloads. I'll need to do some rewriting to load xarray objects from multi-band images, but that may improve performance on the IO side by reading/writing fewer files.
    • [ ] Masking - wxee takes a nodata argument and replaces masked values with that. After downloading, it sets that value in the image metadata or xarray.Dataset. geedim takes a different approach of adding a "FILL_MASK" band to the image before downloading. The advantage of the geedim approach is that you don't need to choose between exporting everything as a float or risking assigning nodata to real values, but it does require downloading more data from EE, and once you actually get the image into xarray and mask it there's no advantage since xarray will promote everything to float64 anyways to accommodate NaN values. I'll probably live with the geedim approach by applying and removing the mask band after downloading, but I should do some experiments to see how that affects performance (and to make sure I'm fully understanding the geedim approach).

    Solved Issues

    • [x] Setting filenames - The geedim.MaskedImage class exposes and caches EE properties, so building filenames from metadata is straightforward. The only consideration is that we need to persist that MaskedImage instance throughout the download process to avoid having to retrieve properties multiple times.
    enhancement question 
    opened by aazuspan 1
  • Time series smoothing filter

    Time series smoothing filter

    Add a wxee.TimeSeries.smooth_time method that applies pixel-wise temporal smoothing to a time series.

    enhancement 
    opened by aazuspan 0
  • Add Drive export and import method

    Add Drive export and import method

    This would add two methods allowing ee.ImageCollection and its subclass objects to be exported to a Drive and then imported into an xarray.Dataset. Dimension and coordinates would be stored in filenames and parsed on import. This feature would allow users to handle time series data when file size or grid size is too large or computations time out.

    Planned usage reference:

    ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET").filterDate("2020", "2021")
    task = ts.wx.to_drive(crs="EPSG:5070", scale=4_000)
    
    # Once files are exported, user manually downloads them to a local folder
    data_dir = "data"
    
    ds = wxee.load_dataset(data_dir)
    

    Drive exporting will be very similar to the wxee.image._get_url method but will instead run and return a batch export task. All of the importing functionality is already implemented in the private wxee.utils._dataset_from_files, so that portion should be simple.

    enhancement 
    opened by aazuspan 3
  • Improve download stability

    Improve download stability

    The current download system is pretty solid with automated retrying, but the cdsapi package has a more extensive system that should improve download stability. See their implementation for reference.

    enhancement 
    opened by aazuspan 0
  • More example notebooks

    More example notebooks

    opened by aazuspan 2
  • Decide how to handle leap days in climatology

    Decide how to handle leap days in climatology

    Currently, running climatology_dayofyear groups days by Julian date. In a leap year, all days after February 29 will be pushed back one Julian day, so the climatological day-of-year 365 would represent December 31 in non-leap years and December 30 in leap years, for example. Day 366 would always represent December 31, but would be aggregated from 1/4 as many days as other days of the year.

    Tools like Ferret handle this by re-gridding all years into 365 steps regardless of leap days (Reference 1, Reference 2).

    Regridding may not be a practical solution in GEE, but it should be considered. If the current solution is kept, the docs should be updated to make that distinction clear.

    enhancement 
    opened by aazuspan 1
Releases(v0.3.3)
Owner
Aaron Zuspan
Geospatial analyst and software developer
Aaron Zuspan
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox ⚡ A Python Module For The Stock Market ⚡ A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural N

Dopevog 31 Dec 16, 2022
PackMyPayload - Emerging Threat of Containerized Malware

This tool takes a file or directory on input and embeds them into an output file acting as an archive/container.

Mariusz Banach 594 Dec 29, 2022
The official Discord Python framework for thenewboston blockchain.

Project Setup Follow the steps below to set up the project on your environment. Mac Setup Homebrew requires the Xcode command-line tools from Apple's

Bucky Roberts 18 Jul 15, 2022
A simple Spamming software made in python

Spam-qlk Warning!!! 'I' am not responsible for the 'damage or harm' caused by this 'Software'!!! Use at your own risk!!! Input the message. After you

Aditya kumar 1 Nov 30, 2021
twitter bot tha uses tweepy library class to connect to TWITTER API

TWITTER-BOT-tweepy- twitter bot that uses tweepy library class to connect to TWITTER API replies to mentions automatically and follows the tweet.autho

Muziwandile Nkomo 2 Jan 08, 2022
Photogrammetry Web API

OpenScanCloud Photogrammetry Web API Overview / Outline: The OpenScan Cloud is intended to be a decentralized, open and free photogrammetry web API. T

Thomas 86 Jan 05, 2023
A wrapper for The Movie Database API v3 and v4 that only uses the read access token (not api key).

fulltmdb A wrapper for The Movie Database API v3 and v4 that only uses the read access token (not api key). Installation Use the package manager pip t

Jacob Hale 2 Sep 26, 2021
Search all history of Chrome in terminal

Chrotry Search all history of Chrome in terminal. Demo Usages Move the Chrome history file to current directory by running move_history.sh Rename hist

Xiaoxu HU 2 Jun 13, 2022
A twitter bot that simply replies with a beautiful screenshot of the tweet, powered by beautify.dhravya.dev

Poet this! Replies with a beautiful screenshot of the tweet, powered by poet.so Installation git clone https://github.com/dhravya/poet-this.git cd po

Dhravya Shah 30 Dec 04, 2022
Currency And Gold Prices - Currency And Gold Prices For Python

Currency_And_Gold_Prices Photos from the app New Update Show range Change better

Ali HemmatNia 4 Sep 19, 2022
Twitter-Scrapping - Tweeter tweets extracting using python

Twitter-Scrapping Twitter tweets extracting using python This project is to extr

Suryadeepsinh Gohil 2 Feb 04, 2022
TrollWare 🤡 is the most advanced Discord Malware & RAT

TrollWare 🤡 TrollWare is the most advanced Discord Malware, with a built-in RAT which can be controlled through a Discord Bot Pinned Note: Please giv

doop 74 Jun 09, 2022
New developed moderation discord bot by archisha

Monitor42 New developed moderation discord bot by αrchιshα#5518. Details Prefix: 42! Commands: Moderation Use 42!help to get command list. Invite http

Kamilla Youver 0 Jun 29, 2022
A modular bot running on python3 with anime theme and have a lot features

STINKY ROBOT Emiko Robot is a modular bot running on python3 with anime theme and have a lot features. Easiest Way To Deploy On Heroku This Bot is Cre

Riyan.rz 3 Jan 21, 2022
Scheduled Block Checker for Cardano Stakepool Operators

ScheduledBlocks Scheduled Block Checker for Cardano Stakepool Operators Lightweight and Portable Scheduled Blocks Checker for Current Epoch. No cardan

SNAKE (Cardano Stakepool) 4 Oct 18, 2022
BanAllBot - Telegram Code To Ban All Group Members very fast

BanAllBot Telegram Code To Ban All Group Members very fast FORK AND KANG WITH CR

27 May 13, 2022
Free and Open Source Channel/Group Voice chat music player for telegram ❤️ with button support Heroku Commands

ZeusMusic Requirements 📝 FFmpeg NodeJS nodesource.com Python 3.7 or higher PyTgCalls MongoDB 2nd Telegram Account (needed for userbot) 🧪 Get SESSION

ZeusNetwork 4 Jan 03, 2022
A comand-line utility for taking automated screenshots of websites

shot-scraper A comand-line utility for taking automated screenshots of websites For background on this project see shot-scraper: automated screenshots

Simon Willison 837 Jan 07, 2023
Telegram bot to provide links of different types of files you send

File To Link Bot - IDN-C-X Telegram bot to provide links of different types of files you send. WHAT CAN THIS BOT DO Is it a nuisance to send huge file

IDNCoderX 3 Oct 26, 2021
Python bindings for swm-core client REST API

Python bindings for swm-core client REST API Description Sky Port is an universal bus between user software and compute resources. It can also be cons

Sky Workflows 1 Jan 01, 2022