Automate the case review on legal case documents and find the most critical cases using network analysis

Overview

Automation on Legal Court Cases Review

This project is to automate the case review on legal case documents and find the most critical cases using network analysis.

Short write-up

Affiliation: Institute for Social and Economic Research and Policy, Columbia University

Project Information:

Keywords: Automation, PDF parse, String Extraction, Network Analysis

Software:

  • Python : pdfminer, LexNLP, nltk sklearn
  • R: igraph

Scope:

  1. Parse court documents, extract citations from raw text.
  2. Build citation network, identify important cases in the network.
  3. Extract judge's opinion text and meta information including opinion author, court, decision.
  4. Model training to predict court decision based on opinion text.

Polit Study on 159 Legal Court Documents (in pilot_159 folder)

1. Process PDF documents using Python

Ipython Notebook Description
1.Extraction by LexNLP.ipynb Extract meta inforation use LexNLP package.
2.Layer Analysis on Sigle File. ipynb Use pdfminer to extract the raw text and the paragraph segamentation in the PDF document.
3.Patent Position by Layer.ipynb Identify the position of patent number in extracted layers from PDF.
4.Opinion and Author by Layer.ipynb Extract opinion text, author, decisions from the layers list.
5.Wrap up to Meta Data.ipynb Store extracted meta data to .json or .csv
6.Visualize citation frequency.ipynb Bar plot of the citation frequencies

2. Data: Parse PDF documents via Python

These datasets are NOT included in this public repository for intellectual property and privacy concern

File
pdf2text159.json A dictionary of 3 list: file_name, raw_text, layers.
cite_edge159.csv Edge list of citation network
cite_node159.csv Meta information of each case: case_number, court, dates
reference_extract.csv cited cases in a list for every case, untidy format for analysis
citation159.csv file citation pair, tidy format for calculation
regulation159.csv file regulation pair, tidy format for calculation

3. Analyze and Visualize using R

File
Calculate Citation Frequency.Rmd Analyze reference_extract.csv
Citation Network.Rmd Analyze cite_edge159

4. Visulization Chart Sample

Citation Frequencycase_freq

Citation Networkcitation_net

Network Visulization and Predictive Modeling on 854 Legal Court Cases (in Extraction_Modelling folder)

1. Extract opinion and meta information from raw text data

.ipynb notebook Description
Full Dataset Merge.ipynb Merge the 854 cases dataset
Edge and Node List.ipynb Create edge and node list
Full Extractions.ipynb Extract author, judge panel, opinion text
Clean Opinion Text.ipynb Remove references and special characters in opinion text

2. Datasets

These datasets are NOT included in this public repository for intellectual property and privacy concern

Dataset Description
amy_cases.json large dictionary {file name: raw text} for 854 cases, from Lilian's PDF parsing
full_name_text.json convert amy_cases.json key value pair to two list: file_name, raw_text
cite_edge.csv edge list of citation
cite_node.csv node list contains case_code, case_name, court_from, court_type
extraction854.csv full extractions include case_code, case_name, court_from, court_type, result, author, judge_panel
decision_text.json json file include author, decision(result of the case), opinion (opinion text), cleaned_text (cleaned opinion text)
cleaned_text.csv csv file contains allt the cleaned text
predict_data.csv cleaned dataset for NLP modeling predict court decision

3. Visulization using R

R markdown file
Full Network Graph.Rmd draw the full citation network
Citation Betwwen Nodes.Rmd draw citation between all the available cases
Clean Data For Predictive Modelling.rmd clean text data for predictive modeling

Interactive Graph

Play with Interactive Graph

Full Citation Network (all cases and cited cases)

Citation Between Available Cases

4. Predictive Modeling using Python

ipynb notebook
NLP Predictive Modeling.ipynb Try different preprocessing, and build a logistic regression to predict court decision.

Visulization of the Bi-gram (words) with the strongest coefficient

Bigram

Owner
Yi Yin
Tech & Business Alignment @ Wolfram Research, Social Sciences Research @ Columbia University
Yi Yin
📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.

Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o

Prakrisht Dahiya 1 Nov 25, 2021
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Chandan Singh 16 Sep 15, 2022
Visualize and compare datasets, target values and associations, with one line of code.

In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat

Francois Bertrand 2.3k Jan 05, 2023
IPython/Jupyter notebook module for Vega and Vega-Lite

IPython Vega IPython/Jupyter notebook module for Vega 5, and Vega-Lite 4. Notebooks with embedded visualizations can be viewed on GitHub and nbviewer.

Vega 335 Nov 29, 2022
HW 2: Visualizing interesting datasets

HW 2: Visualizing interesting datasets Check out the project instructions here! Mean Earnings per Hour for Males and Females My first graph uses data

7 Oct 27, 2021
This is my favourite function - the Rastrigin function.

This is my favourite function - the Rastrigin function. What sparked my curiosity and interest in the function was its complexity in terms of many local optimum points, which makes it particularly in

1 Dec 27, 2021
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Uniform Manifold Approximation and Projection

UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu

Leland McInnes 6k Jan 08, 2023
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Tyler Makaro 394 Dec 18, 2022
Python script to generate a visualization of various sorting algorithms, image or video.

sorting_algo_visualizer Python script to generate a visualization of various sorting algorithms, image or video.

146 Nov 12, 2022
Interactive Dashboard for Visualizing OSM Data Change

Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.

1 Feb 20, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
Data Visualizer for Super Mario Kart (SNES)

Data Visualizer for Super Mario Kart (SNES)

MrL314 21 Nov 20, 2022