Convolutional neural network visualization techniques implemented in PyTorch.

Overview

Convolutional Neural Network Visualizations

Links:https://github.com/STLAND-admin/ML_HKU_Proj_Pytorch_Visu

This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.

Note: I removed cv2 dependencies and moved the repository towards PIL. A few things might be broken (although I tested all methods), I would appreciate if you could create an issue if something does not work.

Note: The code in this repository was tested with torch version 0.4.1 and some of the functions may not work as intended in later versions. Although it shouldn't be too much of an effort to make it work, I have no plans at the moment to make the code in this repository compatible with the latest version because I'm still using 0.4.1.

Implemented Techniques

General Information

Depending on the technique, the code uses pretrained AlexNet or VGG from the model zoo. Some of the code also assumes that the layers in the model are separated into two sections; features, which contains the convolutional layers and classifier, that contains the fully connected layer (after flatting out convolutions). If you want to port this code to use it on your model that does not have such separation, you just need to do some editing on parts where it calls model.features and model.classifier.

Every technique has its own python file (e.g. gradcam.py) which I hope will make things easier to understand. misc_functions.py contains functions like image processing and image recreation which is shared by the implemented techniques.

All images are pre-processed with mean and std of the ImageNet dataset before being fed to the model. None of the code uses GPU as these operations are quite fast for a single image (except for deep dream because of the example image that is used for it is huge). You can make use of gpu with very little effort. The example pictures below include numbers in the brackets after the description, like Mastiff (243), this number represents the class id in the ImageNet dataset.

I tried to comment on the code as much as possible, if you have any issues understanding it or porting it, don't hesitate to send an email or create an issue.

Below, are some sample results for each operation.

Convolutional Neural Network Visualization

To visualize CNN layers is to to visualize activations for a specific input on a specific layer and filter. This was done in [1] Figure 3. Below example is obtained from layers/filters of VGG16 for the first image using guided backpropagation. The code for this opeations is in layer_activation_with_guided_backprop.py. The method is quite similar to guided backpropagation but instead of guiding the signal from the last layer and a specific target, it guides the signal from a specific layer and filter.

Input Image Layer2 Vis. (Filter=0) Layer17 Vis. (Layer=29)

Requirements:

torch == 0.4.1
torchvision >= 0.1.9
numpy >= 1.13.0
matplotlib >= 1.5
PIL >= 1.1.7

Citation

If you find the code in this repository useful for your research consider citing it.

@misc{uozbulak_pytorch_vis_2021,
  author = {Utku Ozbulak},
  title = {PyTorch CNN Visualizations},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/utkuozbulak/pytorch-cnn-visualizations}},
  commit = {53561b601c895f7d7d5bcf5fbc935a87ff08979a}
}

References:

[1] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for Simplicity: The All Convolutional Net, https://arxiv.org/abs/1412.6806

[2] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba. Learning Deep Features for Discriminative Localization, https://arxiv.org/abs/1512.04150

[3] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, https://arxiv.org/abs/1610.02391

[4] K. Simonyan, A. Vedaldi, A. Zisserman. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, https://arxiv.org/abs/1312.6034

[5] A. Mahendran, A. Vedaldi. Understanding Deep Image Representations by Inverting Them, https://arxiv.org/abs/1412.0035

[6] H. Noh, S. Hong, B. Han, Learning Deconvolution Network for Semantic Segmentation https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf

[7] A. Nguyen, J. Yosinski, J. Clune. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images https://arxiv.org/abs/1412.1897

[8] D. Smilkov, N. Thorat, N. Kim, F. Viégas, M. Wattenberg. SmoothGrad: removing noise by adding noise https://arxiv.org/abs/1706.03825

[9] D. Erhan, Y. Bengio, A. Courville, P. Vincent. Visualizing Higher-Layer Features of a Deep Network https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network

[10] A. Mordvintsev, C. Olah, M. Tyka. Inceptionism: Going Deeper into Neural Networks https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

[11] I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harnessing Adversarial Examples https://arxiv.org/abs/1412.6572

[12] A. Shrikumar, P. Greenside, A. Shcherbina, A. Kundaje. Not Just a Black Box: Learning Important Features Through Propagating Activation Differences https://arxiv.org/abs/1605.01713

[13] M. Sundararajan, A. Taly, Q. Yan. Axiomatic Attribution for Deep Networks https://arxiv.org/abs/1703.01365

[14] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, Hod Lipson, Understanding Neural Networks Through Deep Visualization https://arxiv.org/abs/1506.06579

[15] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu. Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks https://arxiv.org/abs/1910.01279

[16] P. Jiang, C. Zhang, Q. Hou, M. Cheng, Y. Wei. LayerCAM: Exploring Hierarchical Class Activation Maps for Localization http://mmcheng.net/mftp/Papers/21TIP_LayerCAM.pdf

Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Datature 243 Jan 05, 2023
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022
Visual Computing Group (Ulm University) 99 Nov 30, 2022
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"

Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published

Kim Heecheol 262 Dec 04, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Souvik Pratiher 16 Nov 17, 2021
Algorithms for monitoring and explaining machine learning models

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual

Seldon 1.9k Dec 30, 2022
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Jesse Vig 4.7k Jan 01, 2023
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022