Imutils - A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

Overview

imutils

A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and both Python 2.7 and Python 3.

For more information, along with a detailed code review check out the following posts on the PyImageSearch.com blog:

Installation

Provided you already have NumPy, SciPy, Matplotlib, and OpenCV already installed, the imutils package is completely pip-installable:

$ pip install imutils

Finding function OpenCV functions by name

OpenCV can be a big, hard to navigate library, especially if you are just getting started learning computer vision and image processing. The find_function method allows you to quickly search function names across modules (and optionally sub-modules) to find the function you are looking for.

Example:

Let's find all function names that contain the text contour:

import imutils
imutils.find_function("contour")

Output:

1. contourArea
2. drawContours
3. findContours
4. isContourConvex

The contourArea function could therefore be accessed via: cv2.contourArea

Translation

Translation is the shifting of an image in either the x or y direction. To translate an image in OpenCV you would need to supply the (x, y)-shift, denoted as (tx, ty) to construct the translation matrix M:

Translation equation

And from there, you would need to apply the cv2.warpAffine function.

Instead of manually constructing the translation matrix M and calling cv2.warpAffine, you can simply make a call to the translate function of imutils.

Example:

# translate the image x=25 pixels to the right and y=75 pixels up
translated = imutils.translate(workspace, 25, -75)

Output:

Translation example

Rotation

Rotating an image in OpenCV is accomplished by making a call to cv2.getRotationMatrix2D and cv2.warpAffine. Further care has to be taken to supply the (x, y)-coordinate of the point the image is to be rotated about. These calculation calls can quickly add up and make your code bulky and less readable. The rotate function in imutils helps resolve this problem.

Example:

# loop over the angles to rotate the image
for angle in xrange(0, 360, 90):
	# rotate the image and display it
	rotated = imutils.rotate(bridge, angle=angle)
	cv2.imshow("Angle=%d" % (angle), rotated)

Output:

Rotation example

Resizing

Resizing an image in OpenCV is accomplished by calling the cv2.resize function. However, special care needs to be taken to ensure that the aspect ratio is maintained. This resize function of imutils maintains the aspect ratio and provides the keyword arguments width and height so the image can be resized to the intended width/height while (1) maintaining aspect ratio and (2) ensuring the dimensions of the image do not have to be explicitly computed by the developer.

Another optional keyword argument, inter, can be used to specify interpolation method as well.

Example:

# loop over varying widths to resize the image to
for width in (400, 300, 200, 100):
	# resize the image and display it
	resized = imutils.resize(workspace, width=width)
	cv2.imshow("Width=%dpx" % (width), resized)

Output:

Resizing example

Skeletonization

Skeletonization is the process of constructing the "topological skeleton" of an object in an image, where the object is presumed to be white on a black background. OpenCV does not provide a function to explicitly construct the skeleton, but does provide the morphological and binary functions to do so.

For convenience, the skeletonize function of imutils can be used to construct the topological skeleton of the image.

The first argument, size is the size of the structuring element kernel. An optional argument, structuring, can be used to control the structuring element -- it defaults to cv2.MORPH_RECT , but can be any valid structuring element.

Example:

# skeletonize the image
gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
skeleton = imutils.skeletonize(gray, size=(3, 3))
cv2.imshow("Skeleton", skeleton)

Output:

Skeletonization example

Displaying with Matplotlib

In the Python bindings of OpenCV, images are represented as NumPy arrays in BGR order. This works fine when using the cv2.imshow function. However, if you intend on using Matplotlib, the plt.imshow function assumes the image is in RGB order. A simple call to cv2.cvtColor will resolve this problem, or you can use the opencv2matplotlib convenience function.

Example:

# INCORRECT: show the image without converting color spaces
plt.figure("Incorrect")
plt.imshow(cactus)

# CORRECT: convert color spaces before using plt.imshow
plt.figure("Correct")
plt.imshow(imutils.opencv2matplotlib(cactus))
plt.show()

Output:

Matplotlib example

URL to Image

This the url_to_image function accepts a single parameter: the url of the image we want to download and convert to a NumPy array in OpenCV format. This function performs the download in-memory. The url_to_image function has been detailed here on the PyImageSearch blog.

Example:

url = "http://pyimagesearch.com/static/pyimagesearch_logo_github.png"
logo = imutils.url_to_image(url)
cv2.imshow("URL to Image", logo)
cv2.waitKey(0)

Output:

Matplotlib example

Checking OpenCV Versions

OpenCV 3 has finally been released! But with the major release becomes backward compatibility issues (such as with the cv2.findContours and cv2.normalize functions). If you want your OpenCV 3 code to be backwards compatible with OpenCV 2.4.X, you'll need to take special care to check which version of OpenCV is currently being used and then take appropriate action. The is_cv2() and is_cv3() are simple functions that can be used to automatically determine the OpenCV version of the current environment.

Example:

print("Your OpenCV version: {}".format(cv2.__version__))
print("Are you using OpenCV 2.X? {}".format(imutils.is_cv2()))
print("Are you using OpenCV 3.X? {}".format(imutils.is_cv3()))

Output:

Your OpenCV version: 3.0.0
Are you using OpenCV 2.X? False
Are you using OpenCV 3.X? True

Automatic Canny Edge Detection

The Canny edge detector requires two parameters when performing hysteresis. However, tuning these two parameters to obtain an optimal edge map is non-trivial, especially when working with a dataset of images. Instead, we can use the auto_canny function which uses the median of the grayscale pixel intensities to derive the upper and lower thresholds. You can read more about the auto_canny function here.

Example:

gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
edgeMap = imutils.auto_canny(gray)
cv2.imshow("Original", logo)
cv2.imshow("Automatic Edge Map", edgeMap)

Output:

Matplotlib example

4-point Perspective Transform

A common task in computer vision and image processing is to perform a 4-point perspective transform of a ROI in an image and obtain a top-down, "birds eye view" of the ROI. The perspective module takes care of this for you. A real-world example of applying a 4-point perspective transform can be bound in this blog on on building a kick-ass mobile document scanner.

Example

See the contents of demos/perspective_transform.py

Output:

Matplotlib example

Sorting Contours

The contours returned from cv2.findContours are unsorted. By using the contours module the the sort_contours function we can sort a list of contours from left-to-right, right-to-left, top-to-bottom, and bottom-to-top, respectively.

Example:

See the contents of demos/sorting_contours.py

Output:

Matplotlib example

(Recursively) Listing Paths to Images

The paths sub-module of imutils includes a function to recursively find images based on a root directory.

Example:

Assuming we are in the demos directory, let's list the contents of the ../demo_images:

from imutils import paths
for imagePath in paths.list_images("../demo_images"):
	print imagePath

Output:

../demo_images/bridge.jpg
../demo_images/cactus.jpg
../demo_images/notecard.png
../demo_images/pyimagesearch_logo.jpg
../demo_images/shapes.png
../demo_images/workspace.jpg
Owner
PyImageSearch
Computer vision and deep learning
PyImageSearch
kikuchipy is an open-source Python library for processing and analysis of electron backscatter diffraction (EBSD) patterns

kikuchipy is an open-source Python library for processing and analysis of electron backscatter diffraction (EBSD) patterns. The library builds on the

pyxem 53 Dec 29, 2022
Goddard Image Analysis and Navigation Tool

Copyright 2021 United States Government as represented by the Administrator of the National Aeronautics and Space Administration. No copyright is clai

NASA 12 Dec 23, 2022
Tools for making image cutouts from sets of TESS full frame images

Cutout tools for astronomical images Astrocut provides tools for making cutouts from sets of astronomical images with shared footprints. It is under a

Space Telescope Science Institute 20 Dec 16, 2022
Nudity detection with Python

nude.py About Nudity detection with Python. Port of nude.js to Python. Installation from pip: $ pip install --upgrade nudepy from easy_install: $ eas

Hideo Hattori 881 Jan 06, 2023
Py3D - A 3d rendering engine written entirely in python

Py3D is a 3d rendering engine written entirely in python. It is a simple and eas

1up Community 2 Nov 14, 2022
A large-scale dataset of both raw MRI measurements and clinical MRI images

fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonym

Facebook Research 907 Jan 04, 2023
Me cleaner - Tool for partial deblobbing of Intel ME/TXE firmware images

me_cleaner me_cleaner is a Python script able to modify an Intel ME firmware image with the final purpose of reducing its ability to interact with the

Nicola Corna 4.1k Jan 08, 2023
Panel Competition Image Generator

Panel Competition Image Generator This project was build by a member of the NFH community and is open for everyone who wants to try it. Relevant links

Juliano Mendieta 1 Oct 22, 2021
missing-pixel-filler is a python package that, given images that may contain missing data regions (like satellite imagery with swath gaps), returns these images with the regions filled.

Missing Pixel Filler This is the official code repository for the Missing Pixel Filler by SpaceML. missing-pixel-filler is a python package that, give

SpaceML 11 Jul 19, 2022
clesperanto is a graphical user interface for GPU-accelerated image processing.

clesperanto is a graphical user interface for a multi-platform multi-language framework for GPU-accelerated image processing. It is based on napari and the pyclesperanto-prototype.

1 Jan 02, 2022
a lite weight photo editor written in python for day to day photo editing!

GNU-PhotoShop A lite weight Photo editing Program (currently CLI only) written in python3 for day to day photo editing. Disclaimer : Currently we don'

Kunal Sharma 5 May 30, 2022
A GUI-based (PyQt5) tool used to design 2D linkage mechanism.

Pyslvs-UI A GUI-based (PyQt5) tool used to design 2D linkage mechanism. Planar Linkages Simulation Python-Solvespace: Kernel from Solvespace with Cyth

Yuan Chang 141 Dec 13, 2022
Scramb.py is a region based JPEG Image Scrambler and Descrambler written in Python

Scramb.py Scramb.py is a region based JPEG Image Scrambler and Descrambler written in Python. Main features Scramb.py can scramble images regions. So

47 Dec 25, 2022
Generate waves art for an image

waves-art Generate waves art for an image. Requirements: OpenCV Numpy Example Usage python waves_art.py --image_path tests/test1.jpg --patch_size 15 T

Hamza Rawal 18 Apr 04, 2022
sK1 2.0 cross-platform vector graphics editor

sK1 2.0 sK1 2.0 is a cross-platform open source vector graphics editor similar to CorelDRAW, Adobe Illustrator, or Freehand. sK1 is oriented for prepr

sK1 Project 238 Dec 04, 2022
QR-code Generator with a basic GUI.

Qr_generator_python Qr code generator with a basic GUI. ❔ About the QR-Code-Generator This project Generates QR codes to sites, e-mails and plain text

Tecixck 2 Oct 11, 2021
Simple Python package to convert an image into a quantized image using a customizable palette

Simple Python package to convert an image into a quantized image using a customizable palette. Resulting image can be displayed by ePaper displays such as Waveshare displays.

Luis Obis 3 Apr 13, 2022
Hello, this project is an example of how to generate a QR Code using python 😁

Hello, this project is an example of how to generate a QR Code using python 😁

Davi Antonaji 2 Oct 12, 2021
A python script for extracting/removing exif data from images by @AbirHasan2005

Image-Exif A Python script for extracting exif metadata from images. How to use? Using this script you can extract exif data from image and save in .c

Abir Hasan 13 Dec 16, 2022
Computational Xmas Tree lights!

Computational Xmas Tree This repo contains the code for the computational illumination of a Christmas Tree! It is based on the work by Matt Parker fro

GSD6338 146 Dec 23, 2022