Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
Demo scripts for the Kubernetes Security Webinar

Kubernetes Security Webinar [in Russian] YouTube video (October 13, 2021) Authors: Artem Yushkovsky (LinkedIn, GitHub) Maxim Mosharov @ Whitespots.io

Slurm 34 Dec 06, 2022
Just some mtk tool for exploitation, reading/writing flash and doing crazy stuff

Just some mtk tool for exploitation, reading/writing flash and doing crazy stuff. For linux, a patched kernel is needed (see Setup folder) (except for read/write flash). For windows, you need to inst

Bjoern Kerler 1.1k Dec 31, 2022
Our Ping Pong Project of numerical analysis, 2nd year IC B2 INSA Toulouse

Ping Pong Project The objective of this project was to determine the moment of impact of the ball with the ground. To do this, we used different model

0 Jan 02, 2022
My custom Fedora ostree build with sway/wayland.

Ramblurr's Sway Desktop This is an rpm-ostree based minimal Fedora developer desktop with the sway window manager and podman/toolbox for doing develop

Casey Link 1 Nov 28, 2021
A simple API to upload notes or files to KBFS

This API can be used to upload either secure notes or files to a secure KeybaseFS folder.

Dakota Brown 1 Oct 08, 2021
A script where you execute a script that generates a base project for your gdextension

GDExtension Project Creator this is a script (currently only for linux) where you execute a script that generates a base project for your gdextension,

Unknown 11 Nov 17, 2022
MuMMI Core is the underlying infrastructure and generalizable component of the MuMMI framework

MuMMI Core is the underlying infrastructure and generalizable component of the MuMMI framework, which facilitates the coordination of massively parallel multiscale simulations.

4 Aug 17, 2022
Wordle is fun, so let's ruin it with computers.

ruin-wordle Wordle is fun, so let's ruin it with computers. Metrics This repository assesses two metrics about each algorithm: Success: how many of th

Charles Tapley Hoyt 11 Feb 11, 2022
This is the community maintained fork of ungleich's cdist (after f061fb1).

cdist This is the community maintained fork of ungleich's cdist (after f061fb1). Work is split between three repositories: cdist - implementation of t

cdist community edition 0 Aug 02, 2022
Up to date simple useragent faker with real world database

fake-useragent info: Up to date simple useragent faker with real world database Features grabs up to date useragent from useragentstring.com randomize

Victor K. 2.9k Jan 04, 2023
Free Vocabulary Trainer - not only for German, but any language

Bilderraten DOWNLOAD THE EXE FILE HERE! What can you do with it? Vocabulary Trainer for any language Use your own vocabulary list No coding required!

Hans Alemão 4 Jan 02, 2023
CarolinaCon CTF Online

CarolinaCon Online CTF CTF challenges from CarolinaCon Online April 23 through April 25, 2021. All challenges from the CTF will eventually be here. Co

49th Security Division 6 May 04, 2022
Additional useful operations for Python

Pyteal Extensions Additional useful operations for Python Available Operations MulDiv64: calculate m1*m2/d with no overflow on multiplication (TEAL 3+

Ulam Labs 11 Dec 14, 2022
dbt (data build tool) adapter for Oracle Autonomous Database

dbt-oracle version 1.0.0 dbt (data build tool) adapter for the Oracle database. dbt "adapters" are responsible for adapting dbt's functionality to a g

Oracle 22 Nov 15, 2022
A collection of existing KGQA datasets in the form of the huggingface datasets library, aiming to provide an easy-to-use access to them.

KGQA Datasets Brief Introduction This repository is a collection of existing KGQA datasets in the form of the huggingface datasets library, aiming to

Semantic Systems research group 21 Jan 06, 2023
MySQL Connectivity based project. Contains various functions of a Store-Management-System

An Intermediate Level Python - MySQL Connectivity based project. Contains various functions of a Store-Management-System.

Yash Wadhvani 2 Nov 21, 2022
Quick script for automatically extracting syscall numbers for an OS

Syscalls-Extractor Quick script for automatically extracting syscall numbers for an OS $ python3 .\syscalls-extractor.py --help usage: syscalls-extrac

m0rv4i 54 Feb 10, 2022
Projects using the Tkinter module in Python!

Tkinter projects This repository includes some Tkinter projects made by me. All of these are simple to understand. I create apps with good functionali

Amey 0 Sep 24, 2021
The goal of this program was to find the most common color in my living room.

The goal of this program was to find the most common color in my living room. I found a dataset online with colors names and their corr

1 Nov 09, 2021
Extract gene length based on featureCount calculation gene nonredundant exon length method.

Extract gene length based on featureCount calculation gene nonredundant exon length method.

laojunjun 12 Nov 21, 2022