Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
WhyNotWin11 - Detection Script to help identify why your PC isn't Windows 11 Release Ready

WhyNotWin11 - Detection Script to help identify why your PC isn't Windows 11 Release Ready

Robert C. Maehl 5.9k Dec 31, 2022
Test reproducibility of leiden/umap on different systems

Demonstrate that UMAP and Leiden analysis is not reproducible between different cpu architectures.

Gregor Sturm 2 Oct 16, 2021
A platform for developers 👩‍💻 who wants to share their programs and projects.

Fest-Practice-2021 This project is excluded from Hacktoberfest 2021. Please use this as a testing repo/project. A platform for developers 👩‍💻 who wa

Mayank Choudhary 40 Nov 07, 2022
The ROS package for Airbotics.

airbotics The ROS package for Airbotics: Developed for ROS 1 and Python 3.8. The package has not been officially released on ROS yet so manual install

Airbotics 19 Dec 25, 2022
Hera is a Python framework for constructing and submitting Argo Workflows.

Hera is an Argo Workflows Python SDK. Hera aims to make workflow construction and submission easy and accessible to everyone! Hera abstracts away workflow setup details while still maintaining a cons

argoproj-labs 241 Jan 02, 2023
Script to calculate the italian fiscal code of a person.

fiscal_code Hi! This is my first public repository, so please be kind if it is not well formatted or it contains errors. I started learning Python abo

FrancescoDiMuro 1 Nov 20, 2021
A python package template that can be adapted for RAP projects

Warning - this repository is a snapshot of a repository internal to NHS Digital. This means that links to videos and some URLs may not work. Repositor

NHS Digital 3 Nov 08, 2022
Interactive class notebooks for ECE4076 Computer Vision, weeks 1 - 6

ECE4076 Interactive class notebooks for ECE4076 Computer Vision, weeks 1 - 6. ECE4076 is a computer vision unit at Monash University, covering both cl

Michael Burke 9 Jun 16, 2022
This is a Blender 2.9 script for importing mixamo Models to Godot-3

Mixamo-To-Godot This is a Blender 2.9 script for importing mixamo Models to Godot-3 The script does the following things Imports the mixamo models fro

8 Sep 02, 2022
A python trivium implemention

A python trivium implemention

tnt2402 1 Nov 12, 2021
Traductor de webs desde consola usando el servicio de Google Traductor.

proxiGG Traductor de webs desde consola usando el servicio de Google Traductor. Se adjunta el código fuente para Python3 y un binario compilado en C p

@as_informatico 2 Oct 20, 2021
Choice Coin 633 Dec 23, 2022
Covid-ChatBot - A Rapid Response Virtual Agent for Covid-19 Queries

COVID-19 CHatBot A Rapid Response Virtual Agent for Covid-19 Queries Contents What is ChatBot Types of ChatBots About the Project Dataset Prerequisite

NelakurthiSudheer 2 Jan 04, 2022
Automated Changelog/release note generation

Quickly generate changelogs and release notes by analysing your git history. A tool written in python, but works on any language.

Documatic 95 Jan 03, 2023
The RAP community of practice includes all analysts and data scientists who are interested in adopting the working practices included in reproducible analytical pipelines (RAP) at NHS Digital.

The RAP community of practice includes all analysts and data scientists who are interested in adopting the working practices included in reproducible analytical pipelines (RAP) at NHS Digital.

NHS Digital 50 Dec 22, 2022
Multi-Probe Attention for Semantic Indexing

Multi-Probe Attention for Semantic Indexing About This project is developed for the topic of COVID-19 semantic indexing. Directories & files A. The di

Jinghang Gu 1 Dec 18, 2022
Number calculator application.

Number calculator application.

Michael J Bailey 3 Oct 08, 2021
A conda-smithy repository for boost-histogram.

The official Boost.Histogram Python bindings. Provides fast, efficient histogramming with a variety of different storages combined with dozens of composable axes. Part of the Scikit-HEP family.

conda-forge 0 Dec 17, 2021
Program Input Nilai Mahasiswa Menggunakan Fungsi

PROGRAM INPUT NILAI MAHASISWA MENGGUNAKAN FUNGSI Nama : Maulana Reza Badrudin Nim : 312110510 Matkul : Bahas Pemograman DESKRIPSI Deklarasi dicti

Maulana Reza Badrudin 1 Jan 05, 2022
Weblate is a copylefted libre software web-based continuous localization system

Weblate is a copylefted libre software web-based continuous localization system, used by over 2500 libre projects and companies in more than 165 count

Weblate 7 Dec 15, 2022