Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
Frappe app for authentication, can be used with FrappeVue-AdminLTE

Frappeauth App Frappe app for authentication, can be used with FrappeVue-AdminLTE

Anthony C. Emmanuel 9 Apr 13, 2022
Improve current data preprocessing for FTM's WOB data to analyze Shell and Dutch Governmental contacts.

We're the hackathon leftovers, but we are Too Good To Go ;-). A repo by Lukas Schubotz and Raymon van Dinter. We aim to improve current data preprocessing for FTM's WOB data to analyze Shell and Dutc

ASReview hackathon for Follow the Money 5 Dec 09, 2021
A python script providing an idea of how a MindSphere application, e.g., a dashboard, can be displayed around the clock without the need of manual re-authentication on enforced session expiration

A python script providing an idea of how a MindSphere application, e.g., a dashboard, can be displayed around the clock without the need of manual re-authentication on enforced session expiration

MindSphere 3 Jun 03, 2022
Submission to the HEAR2021 Challenge

Submission to the HEAR 2021 Challenge For model evaluation, python=3.8 and cuda10.2 with cudnn7.6.5 have been tested. The work uses a mixed supervised

Heinrich Dinkel 10 Dec 08, 2022
CDM Device Checker for python

CDM Device Checker for python

zackmark29 79 Dec 14, 2022
A simple 3D rigid body simulation written in python

pyRigidBody3d A simple 3D rigid body simulation written in python

30 Oct 07, 2022
Integration of CCURE access control system with automation HVAC of a commercial building

API-CCURE-Automation-Quantity-Floor Integration of CCURE access control system with automation HVAC of a commercial building CCURE is an access contro

Alexandre Edson Silva Pereira 1 Nov 24, 2021
Reload all Blender add-on modules

Reload-Addon This add-on creates a list of the modules that the add-on selected in the drop-down menu contains and reloads them with the keyboard shor

2 Dec 02, 2021
Types for the Rasterio package

types-rasterio Types for the rasterio package A work in progress Install Not yet published to PyPI pip install types-rasterio These type definitions

Kyle Barron 7 Sep 10, 2021
This tool don't used illegal ativity

ETHICALTOOL This tool for only educational purposes don't used illegal ativity @onlinehacking this tool for pkg update && pkg upgrade && pkg install g

Mrkarthick 4 Dec 23, 2021
Repository specifically for tcss503-22-wi Students

TCSS503: Algorithms and Problem Solving for Software Developers Course Description Introduces advanced data structures and key algorithmic techniques

Kevin E. Anderson 3 Nov 08, 2022
Stop python warnings, no matter what!

SHUTUP - Stop python warnings, no matter what! Sometimes you just can't mute python warnings. Use this library to solve this. Installation pip install

80 Jan 04, 2023
Python calculator made with tkinter package

Python-Calculator Python calculator made with tkinter package. works both on Visual Studio Code Or Any Other Ide Or You Just Copy paste The Same Thing

Pro_Gamer_711 1 Nov 11, 2021
Declarative and extensible library for configuration & code separation

ClassyConf ClassyConf is the configuration architecture solution for perfectionists with deadlines. It provides a declarative way to define settings f

83 Dec 07, 2022
Projects using the Tkinter module in Python!

Tkinter projects This repository includes some Tkinter projects made by me. All of these are simple to understand. I create apps with good functionali

Amey 0 Sep 24, 2021
A fluid medium for storing, relating, and surfacing thoughts.

Conceptarium A fluid medium for storing, relating, and surfacing thoughts. Read more... Instructions The conceptarium takes up about 1GB RAM when runn

115 Dec 19, 2022
Python Classes Without Boilerplate

attrs is the Python package that will bring back the joy of writing classes by relieving you from the drudgery of implementing object protocols (aka d

The attrs Cabal 4.6k Jan 02, 2023
Understanding the field usage of any object in Salesforce

Understanding the field usage of any object in Salesforce One of the biggest problems that I have addressed while working with Salesforce is to unders

Sebastian Undurraga 1 Dec 14, 2021
sawa (ꦱꦮ) is an open source programming language, an interpreter to be precise, where you can write python code using javanese character.

ꦱꦮ sawa (ꦱꦮ) is an open source programming language, an interpreter to be precise, where you can write python code using javanese character. sawa iku

Rony Lantip 307 Jan 07, 2023
A Python version of Canvacord

A copy of canvacord made in python! Installation Run any of these commands in terminal: Mac / Linux pip install canvacord Windows python -m pip insta

10 Mar 28, 2022