HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Simple project to assist in tracking/logging my working hours

Fill working hours Basic script to assist in the logging/tracking of my working hours How it works Create a file called projects.json in this director

Robin Kennedy-Reid 2 Oct 31, 2022
Um pequeno painel de consulta

Spynel Um pequeno painel com consultas de: IP CEP PLACA CNPJ OBS: caso execute o script pelo termux, recomendo que use o da F-Droid por ser mais atual

Spyware 12 Oct 25, 2022
The blancmange curve can be visually built up out of triangle wave functions if the infinite sum is approximated by finite sums of the first few terms.

Blancmange-curve The blancmange curve can be visually built up out of triangle wave functions if the infinite sum is approximated by finite sums of th

Shankar Mahadevan L 1 Nov 30, 2021
Python Multilingual Ucrel Semantic Analysis System

PymUSAS Python Multilingual Ucrel Semantic Analysis System, it currently is a rule based token level semantic tagger which can be added to any spaCy p

UCREL 13 Nov 18, 2022
Tutorials on advanced python topics, and literate programming framework to write them.

Advanced course on Python3 This course covers several topics Python decorators The python object system / meta classes Also see my text on Python impo

Michael Moser 59 Dec 19, 2022
ticguide: quick + painless TESS observing information

ticguide: quick + painless TESS observing information Complementary to the TESS observing tool tvguide (see also WTV), which tells you if your target

Ashley Chontos 5 Nov 05, 2022
A collection of UIKit components that can be used as a Wagtail StreamField block.

Wagtail UIKit Blocks A collection of UIKit components that can be used as a Wagtail StreamField block. Available UIKit components Container Grid Headi

Krishna Prasad K 13 Dec 15, 2022
Functional interface for concurrent futures, including asynchronous I/O.

Futured provides a consistent interface for concurrent functional programming in Python. It wraps any callable to return a concurrent.futures.Future,

A. Coady 11 Nov 27, 2022
A gamey, snakey esoteric programming language

Snak Snak is an esolang based on the classic snake game. Installation You will need python3. To use the visualizer, you will need the curses module. T

David Rutter 3 Oct 10, 2022
Run unpatched binaries on Nix/NixOS

Run unpatched binaries on Nix/NixOS

Thiago Kenji Okada 160 Jan 08, 2023
Rofi script to minimize / unminimize multiple windows in qtile

Qminimize Rofi script to minimize / unminimize multiple windows in qtile Additional requirements : EWMH module fuzzywuzzy module How to use it : - Clo

9 Sep 18, 2022
Digitales Raumbuch

Helios Digitales Raumbuch Settings Moved to settings. Basic Commands Setting Up Your Users To create a normal user account, just go to Sign Up and fil

1 Nov 19, 2021
Project Faros is a reference implimentation of Red Hat OpenShift 4 on small footprint, bare-metal clusters.

Project Faros Project Faros is a reference implimentation of Red Hat OpenShift 4 on small footprint, bare-metal clusters. The project includes referen

project: Faros 9 Jul 18, 2022
This repo presents you the official code of "VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention"

VISTA VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention Shengheng Deng, Zhihao Liang, Lin Sun and Kui Jia* (*) Corresponding a

104 Dec 29, 2022
The parser of a timetable of tennis matches for Flashscore website

FlashscoreParser The parser of a timetable of tennis matches for Flashscore website. The program collects the schedule of tennis matches for two days

Valendovsky 1 Jul 15, 2022
A streamlit app for exploring image search results from HuggingPics

title emoji colorFrom colorTo sdk app_file pinned huggingpics-explorer 🤗 blue red streamlit app.py false huggingpics-explorer A streamlit app for exp

Nathan Raw 4 Sep 10, 2022
HSPICE can not perform Monte Carlo (MC) simulations while considering aging effects

HSPICE can not perform Monte Carlo (MC) simulations while considering aging effects. I developed a python wrapper that automatically performs MC and aging simulations using HPSICE to save engineering

Habib Kazemi 2 Nov 22, 2021
Mechanized literally means automation.

Mechanized literally means automation. And this branch which you are now observing is automated by the python script. This python project actually automates my workflow related to Git & Github.

Shreejan Dolai 4 Nov 11, 2022
RestMapper takes the pain out of integrating with RESTful APIs.

python-restmapper RestMapper takes the pain out of integrating with RESTful APIs. It removes all of the complexity with writing API-specific code, and

Lionheart Software 8 Oct 31, 2020
Myrepo - A tool to create your own Arch Linux repository

myrepo A (experimental) tool to create your own Arch Linux repository Example We

Anton Hvornum 5 Feb 19, 2022