HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Given tool find related trending keywords of input keyword

blog_generator Given tool find related trending keywords of input keyword (blog_related_to_keyword). Then cretes a mini blog. Currently its customised

Shivanshu Srivastava 2 Nov 30, 2021
Here is my Senior Design Project that I implemented to graduate from Computer Engineering.

Here is my Senior Design Project that I implemented to graduate from Computer Engineering. It is a chatbot made in RASA and helps the user to plan their vacation in the Turkish language. In order to

Ezgi Subaşı 25 May 31, 2022
A good Tool to comment on xmw

A good Tool to comment on xmw

1 Feb 10, 2022
Python 3 script for installing kali tools on your linux machine

Python 3 script for installing kali tools on your linux machine

gh0st 2 Apr 20, 2022
Similarity checking of sign languages

Similarity checking of sign languages This repository checks for similarity betw

Tonni Das Jui 1 May 13, 2022
A wrapper script to make working with ADB (Android Debug Bridge) easier

Python-ADB-Wrapper A wrapper script to make working with ADB (Android Debug Bridge) easier This project was just a simple test to see if I could wrap

18iteration 1 Nov 25, 2021
Commodore 64 OS running on Atari 8-bit hardware

This is the Commodre 64 KERNAL, modified to run on the Atari 8-bit line of computers. They're practically the same machine; why didn't someone try this 30 years ago?

Nick Bensema 133 Nov 12, 2022
Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked

Local osu! server Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked (coming soon)! Windows Setup Insta

Cover 25 Nov 15, 2022
Virtual webcam that takes real webcam footage and replaces the background in order to have Virtual Backgrounds in MS Teams for Linux where the feature is unimplemented.

Background Remover The Need It's been good long while since Microsoft first released a Teams version for Linux and yet, one of Teams' coolest features

Dylan Turner 80 Dec 20, 2022
Dicionario-git-github - Dictionary created to help train new users of Git and GitHub applications

Dicionário 📕 Dicionário criado com o objetivo de auxiliar no treinamento de nov

Felippe Rafael 1 Feb 07, 2022
Expense-manager - Expense manager with python

Expense_manager TO-DO Source extractor: Credit Card, Wallet Destination extracto

1 Feb 13, 2022
Data on Free Food at MIT

MIT Free Food Timing Procrastinating research by plotting data on how long it takes emails on the free-food at mit edu mailing list to go through. Dat

Peter Sharpe 2 Nov 01, 2021
Blender-3D-SH-Dma-plugin - Import and export Sonic Heroes Delta Morph animations (.anm) into Blender 3D

io_scene_sonic_heroes_dma This plugin for Blender 3D allows you to import and ex

Psycrow 3 Mar 22, 2022
Reload all Blender add-on modules

Reload-Addon This add-on creates a list of the modules that the add-on selected in the drop-down menu contains and reloads them with the keyboard shor

2 Dec 02, 2021
Construção de um jogo Dominó na linguagem python com base em algoritmos personalizados.

Domino (projecto-python) Construção de um jogo Dominó na linguaguem python com base em algoritmos personalizados e na: Monografia apresentada ao curso

Nuninha-GC 1 Jan 12, 2022
Pardus-flatpak-gui - A Flatpak GUI for Pardus

Pardus Flatpak GUI A GUI for Flatpak. You can run, install (from FlatHub and fro

Erdem Ersoy 2 Feb 17, 2022
Python-Kite: Simple python code to make kite pattern

Python-Kite Simple python code to make kite pattern. Getting Started These instr

Anoint 0 Mar 22, 2022
Fofa asset consolidation script

资产收集+C段整理二合一 基于fofa资产搜索引擎进行资产收集,快速检索目标条件下的IP,URL以及标题,适用于资产较多时对模糊资产的快速检索,新增C段整理功能,整理出

白泽Sec安全实验室 36 Dec 01, 2022
A person does not exist image bot

A person does not exist image bot

Fayas Noushad 3 Dec 12, 2021
peace-performance (Rust) binding for python. To calculate star ratings and performance points for all osu! gamemodes

peace-performance-python Fast, To calculate star ratings and performance points for all osu! gamemodes peace-performance (Rust) binding for python bas

9 Sep 19, 2022