HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Python MapReduce library written in Cython.

Python MapReduce library written in Cython. Visit us in #hadoopy on freenode. See the link below for documentation and tutorials.

Brandyn White 243 Sep 16, 2022
Audio-analytics for music-producers! Automate tedious tasks such as musical scale detection, BPM rate classification and audio file conversion.

Click here to be re-directed to the Beat Inspect Streamlit Web-App You are a music producer? Let's get in touch via LinkedIn Fundamental Analytics for

Stefan Rummer 11 Dec 27, 2022
Openfe - Alchemical free energy calculations for the masses

The Open Free Energy library Alchemical free energy calculations for the masses.

33 Dec 22, 2022
Reso is a low-level circuit design language and simulator, inspired by things like Redstone, Conway's Game of Life, and Wireworld.

Reso Reso is a low-level circuit design language and simulator, inspired by things like Redstone, Conway's Game of Life, and Wireworld. What is Reso?

Lynn 287 Nov 26, 2022
Groupe du projet Python en 2TL2-4

Présentation Projet EpheCom Ce logiciel a été développé dans le cadre scolaire. EpheCom est un logiciel de communications - vocale et écrite - en temp

1 Dec 26, 2021
No more support server flooding with questions about unsupported hosting.

No more support server flooding with questions about unsupported hosting.

3 Aug 09, 2021
✔️ Create to-do lists to easily manage your ideas and work.

Todo List + Add task + Remove task + List completed task + List not completed task + Set clock task time + View task statistics by date Changelog v 1.

Abbas Ataei 30 Nov 28, 2022
Analysis of ROM image for Norsk Data VDU 301 S

This repository is meant to analyze the ROM images from Norsk Data VDU 301 S as provided at by Torfinn. To combine the two ROM image halves and extrac

Sebastian Rasmussen 1 Oct 21, 2021
使用京东cookie一键生成所有退会链接

JDMemberCloseLinks 本项目旨在使用京东cookie一键生成所有退会链接

hyzaw 68 Jun 10, 2022
Class XII computer science project.

Computer Science Project — Class XII Kshitij Srivastava (XI – A) Introduction The aim of this project is to create a fully operational system for a me

Kshitij Srivastava 2 Jul 21, 2022
Dotfiles & list of programs

dotfiles & list of programs So I wanted to just backup my most used files. I have a bad habit, sometimes I get tired of a distro and do a wipe and sta

2 Sep 04, 2022
Turn your IPad into a Screen-Slaver with 1 simple Pythonista script

ScreenSlaver Turn your IPad into a Screen-Slaver with 1 simple Pythonista script

6 Jul 09, 2022
Spinning waffle from waffle shaped python code

waffle Spinning waffle from waffle shaped python code Based on a parametric curve: r(t) = 2 - 2*sin(t) + (sin(t)*abs(cos(t)))/(sin(t) + 1.4) projected

Viljar Femoen 5 Feb 14, 2022
The presented desktop application was made to solve 1d schrodinger eqation

schrodinger_equation_1d_solver The presented desktop application was made to solve 1d schrodinger eqation. It implements Numerov's algorithm (step by

Artem Kashapov 2 Dec 29, 2021
An app that mirrors your phone to your compute and maps controller input to the screen

What is 'Dragalia Control'? An app that mirrors your phone to your compute and maps controller input to the screen. Inputs are mapped specifically for

1 May 03, 2022
Collection of system-wide scripts that I use on my Gentoo

linux-scripts Collection of scripts that I use on my Gentoo machine. I tend to put all scripts in /scripts directory. It is not likely that you would

Xoores 1 Jan 09, 2022
Run CodeServer on Google Colab using Inlets in less than 60 secs using your own domain.

Inlets Colab Run CodeServer on Colab using Inlets in less than 60 secs using your own domain. Features Optimized for Inlets/InletsPro Use your own Cus

2 Dec 30, 2021
Cross-platform .NET Core pre-commit hooks

dotnet-core-pre-commit Cross-platform .NET Core pre-commit hooks How to use Add this to your .pre-commit-config.yaml - repo: https://github.com/juan

Juan Odicio 5 Jul 20, 2021
In this project we will be using OpenCV to virtually drag a rectangle and drop it at a different location. It will be further used for Virtual Mouse.

Virtual Drag & Drog using OpenCV In this project we will be using OpenCV to virtually drag a rectangle and drop it at a different location. It will be

Hassan Shahzad 5 Sep 27, 2021
Basit bir sunucu - istemci örneği

basitSunucuistemci Aşağıdaki adresteki uygulamadaki process kapanmama sorununun çözülmesi ile oluşturulmuş yeni depo https://github.com/pricheal/pytho

Ali Orhun Akkirman 10 Dec 27, 2022