HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Workshop OOP - Workshop OOP - Discover object-oriented programming

About: This is an open-source bot, the code is open for anyone to see, fork and

Francis Clairicia-Rose-Claire-Joséphine 5 May 02, 2022
Density is a open-sourced multi-purpose tool for ROBLOX with some cool

Density is a open-sourced multi-purpose tool for ROBLOX with some cool

ssl 5 Jul 16, 2022
Trashselected - Plugin for fman.io to move files that has been selected in fman to trash

TrashSelected Plugin for fman.io to move files that has been selected in fman to

1 Feb 04, 2022
This is a Docker-based pipeline for preparing sextractor-ready multiwavelength images

Pipeline for creating NB422-detected (ODI) catalog The repository contains a Docker-based pipeline for preprocessing observational data. The pipeline

1 Sep 01, 2022
Framework for creating efficient data processing pipelines

Aqueduct Framework for creating efficient data processing pipelines. Contact Feel free to ask questions in telegram t.me/avito-ml Key Features Increas

avito.tech 137 Dec 29, 2022
A(Sync) Interface for internal Audible API written in pure Python.

Audible Audible is a Python low-level interface to communicate with the non-publicly Audible API. It enables Python developers to create there own Aud

mkb79 192 Jan 03, 2023
Automatically re-open threads when they get archived, no matter your boost level!

ThreadPersist Automatically re-open threads when they get archived, no matter your boost level! Installation You will need to install poetry to run th

7 Sep 18, 2022
Write-ups for CTF Internacional MetaRed 2021 5th stage

MetaRed2021-5th-Writeups Write-ups for CTF Internacional MetaRed 2021 5th stage Easy (15) No Status Category Name Creator(s) 01 Done osint Cybersecuri

UA Cybersecurity 2 Dec 22, 2021
Tracking stock volatility.

SP500-highlow-tracking Track stock volatility. Being a useful indicator of the stock price volatility, High-Low gap represents the price range of the

Thong Huynh 13 Sep 07, 2022
Make after-work Mending More flexible In Python

Mending Make after-work Mending More flexible In Python A Lite Package focuses on making project's after-post mending pythonic and flexible. Certainly

2 Jun 15, 2022
Plugin to manage site, circuit and device diagrams and documents in Netbox

Netbox Documents Plugin A plugin designed to faciliate the storage of site, circuit and device specific documents within NetBox Note: Netbox v3.2+ is

Jason Yates 38 Dec 24, 2022
An easy FASTA object handler, reader, writer and translator for small to medium size projects without dependencies.

miniFASTA An easy FASTA object handler, reader, writer and translator for small to medium size projects without dependencies. Installation Using pip /

Jules Kreuer 3 Jun 30, 2022
Keyboard Layout Change - Extension for Ulauncher

Keyboard Layout Change - Extension for Ulauncher

Marco Borchi 4 Aug 26, 2022
JSEngine is a simple wrapper of Javascript engines.

JSEngine This is a simple wrapper of Javascript engines, it wraps the Javascript interpreter for Python use. There are two ways to call interpreters,

11 Dec 18, 2022
Cloud-native SIEM for intelligent security analytics for your entire enterprise.

Microsoft Sentinel Welcome to the Microsoft Sentinel repository! This repository contains out of the box detections, exploration queries, hunting quer

Microsoft Azure 2.9k Jan 02, 2023
A feed generator. Currently supports generating RSS feeds from Google, Bing, and Yahoo news.

A feed generator. Currently supports generating RSS feeds from Google, Bing, and Yahoo news.

Josh Cardenzana 0 Dec 13, 2021
Generalise Prometheus metrics. takes out server specific, replaces variables and such.

Generalise Prometheus metrics. takes out server specific, replaces variables and such. makes it easier to copy from Prometheus console straight to Grafana.

ziv 5 Mar 28, 2022
API to summarize input text

summaries API to summarize input text normal run $ docker-compose exec web python -m pytest disable warnings $ docker-compose exec web python -m pytes

Brad 1 Sep 08, 2021
LTGen provides classic algorithms used in Language Theory.

LTGen LTGen stands for Language Theory GENerator and provides tools to implement language theory. Command Line LTGen is a collection of tools to imple

Hugues Cassé 1 Jan 07, 2022
Simple Python script I use to manage and build my Reflux themes.

Simple Python script I use to manage and build my Reflux themes. Built for personal use, but anyone can easily fork and tweak to suit thier needs.

Ire 3 Jan 25, 2022