HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
原神抽卡记录导出

原神抽卡记录导出 抽卡记录分析工具 from @笑沐泽 抽卡记录导出工具js版,含油猴脚本可在浏览器导出 注意:我的是python版,带饼图的是隔壁electron版,功能类似 Wik

834 Jan 04, 2023
Modify version of impacket wmiexec.py, get output(data,response) from registry, don't need SMB connection, also bypassing antivirus-software in lateral movement like WMIHACKER.

wmiexec-RegOut Modify version of impacket wmiexec.py,wmipersist.py. Got output(data,response) from registry, don't need SMB connection, but I'm in the

小离 228 Jan 04, 2023
Free Vocabulary Trainer - not only for German, but any language

Bilderraten DOWNLOAD THE EXE FILE HERE! What can you do with it? Vocabulary Trainer for any language Use your own vocabulary list No coding required!

Hans Alemão 4 Jan 02, 2023
Material de apoio da oficina de SAST apresentada pelo CAIS no Webinar de 28/05/21.

CAIS-CAIS Conjunto de Aplicações Intencionamente Sem-Vergonha do CAIS Material didático do Webinar "EP1. Oficina - Práticas de análise estática de cód

Fausto Filho 14 Jul 25, 2022
Custom component to calculate estimated power consumption of lights and other appliances

Custom component to calculate estimated power consumption of lights and other appliances. Provides easy configuration to get virtual power consumption sensors in Home Assistant for all your devices w

Bram Gerritsen 552 Dec 28, 2022
Block when attacker want to bypass the limit of request

Block when attacker want to bypass the limit of request

iFanpS 1 Dec 01, 2021
A simple, fantasy and fast note taking program.

notes A simple, fantasy and fast note taking program Installation This program supposed to run in linux and may have some bugs on windows or any other

Ali Hosseinverdi 1 Apr 06, 2022
Anonfiles files leaker via keyword.

Anonfiles files leaker via keyword

Trac3D1y 6 Nov 23, 2022
A collection of python exercises to help your learning path!

How to use Step 1: run this command git clone https://github.com/TechPenguineer/Python-Exercises.git Step 2: Run this command cd Python-Exercises You

Tech Penguin 5 Aug 05, 2021
Find Transposon Element insertions using long reads (nanopore), by alignment directly. (minimap2)

find_te_ins find_te_ins is designed to find Transposon Element (TE) insertions using long reads (nanopore), by alignment directly. (minimap2) Install

Ming Wang 1 Feb 09, 2022
PyCASCLib: CASC interface for Warcraft III

PyCASCLib CASC interface for Warcraft III. This repo provides bindings for JCASC: https://github.com/DrSuperGood/JCASC Installation Jdk is required fo

2 Jun 04, 2022
This program is meant to take the pain out of generating nice bash PS1 prompts.

TOC PS1 Installation / Quickstart License Other Docs Examples PS1 Command Help PS1 ↑ This program is meant to take the pain out of generating nice bas

Steven Hollingsworth 6 Jun 19, 2022
Social reading and reviewing, decentralized with ActivityPub

BookWyrm Social reading and reviewing, decentralized with ActivityPub Contents Joining BookWyrm Contributing About BookWyrm What it is and isn't The r

BookWyrm 1.4k Jan 08, 2023
Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Yueqian Liu 3 Oct 24, 2022
A notebook explaining the principle of adversarial attacks and their defences

TL;DR: A notebook explaining the principle of adversarial attacks and their defences Abstract: Deep neural networks models have been wildly successful

1 Jan 22, 2022
Python Multilingual Ucrel Semantic Analysis System

PymUSAS Python Multilingual Ucrel Semantic Analysis System, it currently is a rule based token level semantic tagger which can be added to any spaCy p

UCREL 13 Nov 18, 2022
A simple and usefull python calculator.

simplepy-calculator Your simple and fresh calculator. Getting Started Install python3 from the oficial python website or via terminal. Clone this repo

Felix Sanchez 1 Jan 18, 2022
An example of Connecting a MySQL Database with Python Code

An example of Connecting a MySQL Database with Python Code And How to install Table of contents General info Technologies Setup General info In this p

Mohammad Hosseinzadeh 1 Nov 23, 2021
The repository for AnyMacro: a Fusion360 Add-In

AnyMacro AnyMacro is an Autodesk® Fusion 360™ add-in for chaining multiple commands in a row to form Macros. Macros are created from a set of commands

1 Jan 07, 2022
A comprensive software collection for nmea manipulation

nmeatoolkit A comprensive software collection for nmea manipulation; it includes a library and a collections of command line tools. Library pipes: con

Davide Gessa 1 Sep 14, 2022