HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
A very terrible python-based programming language that uses folders instead of text files

PYFolders by Lewis L. Foster PYFolders is a very terrible python-based programming language that uses folders instead of regular text files. In this r

Lewis L. Foster 5 Jan 08, 2022
DD监控室第一版

DD监控室 运行指南

执明神君 1.2k Dec 31, 2022
An After Effects render queue for ShotGrid Toolkit.

AEQueue An After Effects render queue for ShotGrid Toolkit. Features Render multiple comps to locations defined by templates in your Toolkit config. C

Brand New School 5 Nov 20, 2022
This is a simple python script for checking A/L Examination results of srilankan students

AL-Result-Checker This is a simple python script for checking A/L Examination results of srilankan students INSTALLATION [Termux] [Linux] : apt-get up

Razor Kenway 8 Oct 24, 2022
log4shell pwner for vulnerable minecraft servers

Log4-hell name supposed to be Log4$hell but oh well log4shell pwner for vulnerable minecraft servers install all reqs python + a minecraft client for

1 Jan 05, 2022
Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked

Local osu! server Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked (coming soon)! Windows Setup Insta

Cover 25 Nov 15, 2022
ROS Foxy + Raspi + Adafruit BNO055

ROS Foxy + Raspi + Adafruit BNO055

Ar-Ray 3 Nov 04, 2022
Gives you more advanced math in python.

AdvancedPythonMath Gives you more advanced math in python. Functions .simplex(args: {number}) .circ(args: {raidus}) .pytha(args: {leg_a + leg_2}) .slo

Voidy Devleoper 1 Dec 25, 2021
A module to prevent invites and joins to Matrix rooms by checking the involved server(s)' domain.

Synapse Domain Rule Checker A module to prevent invites and joins to Matrix rooms by checking the involved server(s)' domain. Installation From the vi

matrix.org 4 Oct 24, 2022
CupScript is a simple programing language made with python

CupScript CupScript is a simple programming language made with python It includes some basic functions, variables, loops, and some other built in func

FUSEN 23 Dec 29, 2022
A simple but fully functional calculator that will take multiple operations.

Functional-Calculator A simple but fully functional calculator that will take multiple operations. Usage Run the following command through terminal: p

Uzziel Ariel 1 Dec 22, 2022
BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset.

BloodCheck BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset. Installation

Mr B0b 16 Nov 05, 2021
A turtlebot auto controller allows robot to autonomously explore environment.

A turtlebot auto controller allows robot to autonomously explore environment.

Yuliang Zhong 1 Nov 10, 2021
TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virtual Summer Internship

💻 Welcome to Team Fleming's Repo! #TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virt

3 Aug 08, 2021
The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications.

Turtle 🐢 The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications. As of usual with elemen

TenderOwl 14 Dec 29, 2022
The code submitted for the Analytics Vidhya Jobathon - February 2022

Introduction On February 11th, 2022, Analytics Vidhya conducted a 3-day hackathon in data science. The top candidates had the chance to be selected by

11 Nov 21, 2022
YunoHost is an operating system aiming to simplify as much as possible the administration of a server.

YunoHost is an operating system aiming to simplify as much as possible the administration of a server. This repository corresponds to the core code, written mostly in Python and Bash.

YunoHost 1.5k Jan 09, 2023
Runtime Type Checking in Python 3

typo This package intends to provide run-time type checking for functions annotated with argument type hints (standard library typing module in Python

Ivan Smirnov 26 Dec 13, 2022
A simple and usefull python calculator.

simplepy-calculator Your simple and fresh calculator. Getting Started Install python3 from the oficial python website or via terminal. Clone this repo

Felix Sanchez 1 Jan 18, 2022
Simple plug-and-play installer for users who want to LineageOS from stock firmware, or from another custom ROM.

LineageOS for the Teracube 2e Simple plug-and-play installer for users who want to LineageOS from stock firmware, or from another custom ROM. Dependen

Gagan Malvi 5 Mar 31, 2022