HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Adds a Bake node to Blender's shader node system

Bake to Target This Blender Addon adds a new shader node type capable of reducing the texture-bake step to a single button press. Please note that thi

Thomas 8 Oct 04, 2022
A domonic-like wrapper around selectolax

A domonic-like wrapper around selectolax

byteface 3 Jun 23, 2022
🎴 LearnQuick is a flashcard application that you can study with decks and cards.

🎴 LearnQuick is a flashcard application that you can study with decks and cards. The main function of the application is to show the front sides of the created cards to the user and ask them to guess

Mehmet Güdük 7 Aug 21, 2022
SimBiber - A tool for simplifying bibtex with official info

SimBiber: A tool for simplifying bibtex with official info. We often need to sim

336 Jan 02, 2023
Simple module with some functions such as generate password (get_random_string)

Simple module with some functions such as generate password (get_random_string), fix unicode strings, size converter, dynamic console, read/write speed checker, etc.

Dmitry 2 Dec 03, 2022
Check a discord message and give it a percentage of scamminess

scamChecker Check a discord message and give it a percentage of scamminess Run the bot, and run the command !scamCheck and it will return a percentage

3 Sep 22, 2022
eyes is a Public Opinion Mining System focusing on taiwanese forums such as PTT, Dcard.

eyes is a Public Opinion Mining System focusing on taiwanese forums such as PTT, Dcard. Features 🔥 Article monitor: helps you capture the trend at a

Sean 116 Dec 29, 2022
An OpenSource crowd-sourced cooking recipes website

An OpenSource crowd-sourced cooking recipes website

21 Jul 31, 2022
Python most simple|stupid programming language (MSPL)

Most Simple|Stupid Programming language. (MSPL) Stack - Based programming language "written in Python" Features: Interpretate code (Run). Generate gra

Kirill Zhosul 14 Nov 03, 2022
Python module for creating the circuit simulation definitions for Elmer FEM

elmer_circuitbuilder Python module for creating the circuit simulation definitions for Elmer FEM. The circuit definitions enable easy setup of coils (

5 Oct 03, 2022
Demo code for "Logs in distributed systems" webinar

Hexlet Logs Demo Пререквизиты docker-compose python3 Учетка в DataDog Базовое понимание, что такое логи (можно почитать гайд

Anton Markelov 1 Dec 01, 2021
ICEtool - ICEtool plugin for QGIS

ICEtool ICEtool is an all in one QGIS plugin to easily compute ground temperatur

Arthur Evrard 13 Dec 16, 2022
Render your templates using .txt files

PizzaX About Run Run tests To run the tests, open your terminal and type python tests.py (WIN) or python3 tests.py (UNX) Using the function To use the

Marcello Belanda 2 Nov 24, 2021
This scrypt for auto brightness control

God damn. This scrypt for auto brightness control. The scrypt has voice assistant. You should move this script to auto-upload folder. What do you need

0 Jul 25, 2022
Hotpile: High Order Turing Machine Language Compiler

Hotpile: High Order Turing Machine Language Compiler Build and Run Requirements: Python 3.6+, bison, flex, and GCC installed. Needs to be run under UN

Jiang Weihao 4 Dec 29, 2021
The refactoring tutorial I wrote for PyConDE 2022. You can also work through the exercises on your own.

Refactoring 101 planet images by Justin Nichol on opengameart.org CC-BY 3.0 Goal of this Tutorial In this tutorial, you will refactor a space travel t

Kristian Rother 9 Jun 10, 2022
Convex Optimisation MVA course - Assignment

Convex Optimisation MVA course - Assignment This repository contains the coding files of the third assignment in the MVA Convex Optimisation course. U

1 Nov 27, 2021
pyToledo is a Python library to interact with the common virtual learning environment for the Association KU Leuven (Toledo).

pyToledo pyToledo is a Python library to interact with the common virtual learning environment for the Association KU Leuven a.k.a Toledo. Motivation

Daan Vervacke 5 Jan 03, 2022
A simple and efficient computing package for Genshin Impact gacha analysis

GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例

一棵平衡树 34 Nov 26, 2022
Distributed behavioral experiments

Autopilot Docs Paper Forum Hardware Autopilot is a Python framework for performing complex, hardware-intensive behavioral experiments with swarms of n

70 Dec 14, 2022