HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Package to provide translation methods for pyramid, and means to reload translations without stopping the application

Package to provide translation methods for pyramid, and means to reload translations without stopping the application

Grzegorz Śliwiński 4 Nov 20, 2022
Werkzeug has a debug console that requires a pin. It's possible to bypass this with an LFI vulnerability or use it as a local privilege escalation vector.

Werkzeug Debug Console Pin Bypass Werkzeug has a debug console that requires a pin by default. It's possible to bypass this with an LFI vulnerability

Wyatt Dahlenburg 23 Dec 17, 2022
DNA Storage Simulator that analyzes and simulates DNA storage

DNA Storage Simulator This monorepository contains code for a research project by Mayank Keoliya and supervised by Djordje Jevdjic, that analyzes and

Mayank Keoliya 3 Sep 25, 2022
A Python package that provides physical constants.

PhysConsts A Python package that provides physical constants. The code is being developed by Marc van der Sluys of the department of Astrophysics at t

Marc van der Sluys 1 Jan 05, 2022
Snack Rice - A Rice University servery finder, customized for your needs!

Snack Rice - A Rice University servery finder, customized for your needs!

Aidan Gerber 3 Sep 25, 2022
A few of my adventures with Devito.

Devito-playbox A few of my adventures with Devito. This repository contains a few notebooks and scripts that will lead me in the road of learning this

Átila Saraiva Quintela Soares 1 Feb 08, 2022
HSPyLib is a Python library that will elevate your experience to another level.

HomeSetup Python Library - HSPyLib Your mature python application HSPyLib is a Python library that will elevate your experience to another level. It r

Hugo Saporetti Junior 4 Dec 14, 2022
Sentiment Based Product Recommendation System

Sentiment Based Product Recommendation System The e-commerce business is quite p

Sumit Sahay 2 Jan 15, 2022
A Lego Mindstorm robot for dealing out cards based on a birds-eye view of a poker table and given ArUco fiducial tags.

A Lego Mindstorm robot for dealing out cards based on a birds-eye view of a poker table and given ArUco fiducial tags.

4 Dec 06, 2021
JupyterLite as a Datasette plugin

datasette-jupyterlite JupyterLite as a Datasette plugin Installation Install this plugin in the same environment as Datasette. $ datasette install dat

Simon Willison 11 Sep 19, 2022
A bash-like intrepreted language

A Bash-like interpreted scripting language.

AshVXmc 1 Oct 28, 2021
A Python application that simulates the rolling of a dice, randomly picking one of the 6 faces and then displaying it.

dice-roller-app This is an application developed in Python that shuffles between the 6 faces of a dice, using buttons to shuffle and close the applica

Paddy Costelloe 0 Jul 20, 2021
An almost fully customizable language made in python!

Whython is a project language, the idea of it is that anyone can download and edit the language to make it suitable to what they want.

Julian 47 Nov 05, 2022
Sathal's Python Projects Repository

Sathal's Python Projects Repository Purpose and Motivation I come from a mainly C Programming Language background and have previous classroom experien

Sam 1 Oct 20, 2021
A fast Python in-process signal/event dispatching system.

Blinker Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals". Signal receivers

jason kirtland 1.4k Dec 31, 2022
Terrible sudoku solver with spaghetti code and performance issues

SudokuSolver Terrible sudoku solver with spaghetti code and performance issues - if it's unable to figure out next step it will stop working, it never

Kamil Bizoń 1 Dec 05, 2021
This repo created to complete the task HACKTOBER 2021, contribute now and get your special T-Shirt & Sticker. TO SUPPORT OWNER PLEASE PRESS STAR BUTTON

❤ THIS REPO WILL CLOSED IN 31 OCT 00:00 ❤ This repository will automatically assign the hacktoberfest and hacktoberfest-accepted labels to all submitt

Rajendra Rakha 307 Dec 27, 2022
Android Blobs Organizer

Android Blobs Organizer

Sebastiano Barezzi 96 Jan 02, 2023
Whole-day timezone comparison

Timezone Converter Compare a full day of your local timezone with foreign ones $ timezone-converter tijuana --zone $ timezone-converter tijuana new_yo

Iago Alonso 12 Nov 24, 2022
A passive recon suite designed for fetching the information about web application

FREAK Suite designed for passive recon Usage: python3 setup.py python3 freak.py warning This tool will throw error if you doesn't provide valid api ke

toxic v3nom 7 Feb 17, 2022