Interactivity Lab: Household Pulse Explorable

Overview

Interactivity Lab: Household Pulse Explorable

Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a curated yet open-ended look at a dataset.

The Household Pulse Survey is a weekly survey run by the US Census Bureau that measures how the coronavirus pandemic is impacting households across the country from a social and economic perspective. It’s a valuable and extensive source of data to gain insight on individuals and families, and one that we will only begin to touch on in today’s lab.

To help a user explore this data interactively, we will build a Streamlit application that displays the results of one Household Pulse Survey, which ran from from September 29 to October 11, 2021.

Part 0: Setup (before class)

Before coming to class, please download this repository, set up your virtual environment of choice, and install the dependencies using pip install -r requirements.txt. Now start the application by typing streamlit run streamlit_app.py. You should see the template code running in the browser!

Part 1: Warmup and generating plots

All your code for this lab should go in the streamlit_app.py script. In this file, you’ll see helper functions (some of which you will fill in) and a section labeled “MAIN CODE.” Most of your code will go in this latter section, which is at the top level of the script and will run from top to bottom to render your Streamlit application.

  1. Let’s get started by printing some data to the browser. Implement the load_data function, which should read the CSV file pulse39.csv and return it. Then, in the main code, use Streamlit’s builtin dataframe component to print the first 10 rows of df. You should see a scrollable table like this:

Screenshot of the dataframe being visualized in Streamlit

To get an idea of the distribution of demographics in this dataset, let’s create some summary plots using Altair. (The dataset includes several demographic features, which are listed in the Appendix at the bottom of this document. You may wish to visualize more of these features if you have time.)

  1. Create Altair bar charts to visualize the distributions of race and education levels in the data. You may want to refer to the Altair documentation as you build your charts. Remember that to render an Altair chart in Streamlit, you must call st.altair_chart(chart) on the Altair chart object.

    Tip: To get the counts of a categorical variable to visualize, you can use the Altair count aggregation, like so:

    chart = alt.Chart(df)...encode(
        x='count()',
        y='
         
          '
         
    )
  2. Make your charts interactive! This is super easy with Altair. Just add .interactive() to the end of your Altair function call, and you should be able to pan and zoom around your chart. You should also create some tooltips to show the numerical data values. To do this, add the tooltip parameter to your encoding, like so:

    chart = alt.Chart(df)...encode(
        ...,
        tooltip=['
         
          '
         ]
    ).interactive()

Examine the summary charts and see if you can get a sense of the distributions in the dataset. Take a minute to discuss with your group: Who is well-represented in this data, and who isn’t? Why might this be the case?

Part 2: Interactive Slicing Tool

Up until now, we’ve only used basic interactivity from Altair. But what if we want to allow the user to choose which data gets plotted? Let’s now build a Streamlit interface that lets the user select a group of interest based on some demographic variables (which we’ll call a “slice”), and compare distributions of outcome variables for people within the slice against people outside of it.

We'll allow the user to slice the data based on the following four demographic variables (don't worry, the code will be similar for most of these):

  • gender (includes transgender and an option for other gender identities)
  • race
  • education (highest education level completed)
  • age (integers ranging from 19 to 89)

Once they've sliced the data, we will visualize a set of vaccination-related outcome variables for people inside and outside the slice:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

If you're interested, the dataset contains a few other sets of outcomes, which you can browse in the Appendix. But for now, let's start slicing!

  1. Decide what controls are best for the user to manipulate each demographic variable. The controls that are supported in Streamlit are listed here.

  2. Build the controls in the “Custom slicing” section of the page. If you run into trouble, refer to the Streamlit docs or ask the TAs! Tip: Take note of how the values are returned from each Streamlit control. You will need this information for the subsequent steps.

  3. Fill in the get_slice_membership function, which builds a Boolean series indicating whether each data point is part of the slice or not. An example of how to do this using gender as a multiselect has already been filled in for you.

  4. Now, use the values returned from each control to create a slice by calling the get_slice_membership function.

  5. Test that your slicing tool is working by writing a line to the page that prints the count and percentage of the data that is contained in the slice. Manipulate some of the controls and check that the size of each slice matches your expectations.

  6. Create visualizations comparing the three outcome variables within the slice to the variables outside the slice. We recommend using an st.metric component to show the vaccination rate and the vaccine intention fields, and a bar chart to show the distribution of reasons for not getting the vaccine.

    Tip: To display the vaccine hesitancy reasons, the dataframe will require some transformation before passing it to Altair. We’ve provided a utility function to help you do this, which you can use like so:

    # Creates a dataframe with columns 'reason' (string) and 'agree' (boolean)
    vaccine_reasons_inslice = make_long_reason_dataframe(df[slice_labels], 'why_no_vaccine_')
    
    chart = alt.Chart(vaccine_reasons_inslice, title='In Slice').mark_bar().encode(
        x='sum(agree)',
        y='reason:O',
    ).interactive()
    # ...

Here is an example of what your slicing tool could look like (here we are using st.columns to make a 2-column layout):

Screenshot of an example showing a comparison of reasons why people are opting not to get the vaccine

With your group, try slicing the data a few different ways. Discuss whether you find any subgroups that have different outcomes than the rest of the population, and see if you can hypothesize why this might be!

Part 3 (bonus): Interactive Random Sampling

If you have time, you can implement another simple interactive function that users will appreciate. While large data exploration tools are powerful ways to see overall trends, the individual stories of people in the dataset can sometimes get lost. Let’s implement a tool to randomly sample from the dataset and portray information relevant to the topic you investigated above.

  1. In the “Person sampling” section, build a button to retrieve a random person.

  2. When the button is pressed, write code to retrieve a random row from the dataset. You can use the pandas.DataFrame.sample function for this.

  3. Display the information from this datapoint in a human-readable way. For example, one possible English description of a datapoint could look like this:

    This person is a 65-year-old Straight, Married Female of White race (non-hispanic). They have not received the vaccine, and their intention to not get the vaccine is 3.0. Their reasons for not getting the vaccine include: Concerned about possible side effects, Don't know if it will protect me, Don't believe I need it, Don't think COVID-19 is a big threat

As in Part 2, feel free to communicate this information in the way that feels most appropriate to you.

Discuss with your group: What do you notice about individual stories generated this way? What are the strengths and drawbacks of sampling and browsing individual datapoints compared to looking at summary visualizations?

Appendix: Dataset Features

Demographic Variables

  • age and age_group (age_group bins the ages into four categories)
  • gender (includes transgender and an option for other gender identities)
  • sexual_orientation
  • marital_status
  • race and hispanic (the US Census defines ‘Hispanic’ as being independent of self-identified race, which is why it is coded as a separate variable)
  • education (highest education level completed)
  • num_children_hhld (the number of children living in the person’s household)
  • had_covid (boolean)

Outcome Variables

Reasons for vaccine hesitancy

To study vaccination rates, people’s intentions to get or not get the vaccine, and their reasons for this, the following columns are available:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

Economic and food insecurity

The dataset includes columns that may be useful to understand people’s levels of financial and food insecurity:

  • expenses_difficulty (scale from 1 - 4, 1 is least difficulty, 4 is most difficulty paying expenses)
  • housing_difficulty (scale from 1 - 4, same as above for paying next rent or mortgage payment)
  • food_difficulty (scale from 1 - 4, same as above for having enough food)
  • why_not_enough_food_ (four boolean columns indicating whether the person experienced each reason for not having enough food. Note that multiple reasons can be selected)

Mental health

The dataset also includes some columns for understanding people’s recent mental health status:

  • freq_anxiety, freq_worry, freq_little_interest, freq_depressed (scale from 1 - 4 where 1 indicates not at all, 4 indicates nearly every day in the past two weeks)
  • mh_prescription_meds (boolean whether the person has taken prescription medication for mental health)
  • mh_services (boolean whether the person has received mental health services in the past month)
  • mh_notget (boolean whether the person sought mental health services but did not receive them)
Hopefully it'll become a very annoying desktop pet

AnnoyingPet Basic Tutorial: https://seebass22.github.io/python-desktop-pet-tutorial/ Handling Mouse Input: https://pythonhosted.org/pynput/mouse.html

1 Jun 08, 2022
The fetch of the delegator list and the input of the epoch nonce need to be done independently

raffle The fetch of the delegator list and the input of the epoch nonce need to be done independently. Get the list of delegators at the epoch change.

1 Dec 15, 2021
Is a polybar module that will show you your progress in Hack The Box

HTB-Status for Polybar Is a polybar module that will show you your progress in Hack The Box indicating your current rank, global rank, points and resp

bitc0de 8 Jan 14, 2022
Semantic Data Management - Property Graphs 📈

SDM - Lab 1 @ UPC 👨🏻‍💻 Table of contents Introduction Property Graph Dataset 1. Introduction This repo is all about what we have done in SDM lab 1

Mohammad Zain Abbas 1 Mar 20, 2022
Senator Stock Trading Tester

Senator Stock Trading Tester Program to compare stock performance of Senator's transactions vs when the sale is disclosed. Using to find if tracking S

Cole Cestaro 1 Dec 07, 2021
Small Arrow Vortex clipboard processing library

Description Small Arrow Vortex clipboard processing library. Install You can install this library from PyPI with pip install av-clipboard-lib or compi

Delta Epsilon 1 Dec 18, 2021
Mines all the moneys and stuff and things.

NFT Miner NFT Miner - Version 1.1.0 - Quick Fix Since the whole NFT thing started booming on Twitter it's been hard not to see one of those ugly ass m

8w8 1 Dec 13, 2021
Rock 💎 Paper 📝 Scissors ✂️ Lizard 🦎 Spock 🖖

Rock 💎 Paper 📝 Scissors ✂️ Lizard 🦎 Spock 🖖 If you’ve seen The Big Bang Theory, you’ve heard of a game called “Rock, Paper, Scissors, Lizard, Spoc

AmirHossein Mohammadi 16 Jun 19, 2022
Render reMarkable documents to PDF

rmrl: reMarkable Rendering Library rmrl is a Python library for rendering reMarkable documents to PDF files. It takes the original PDF document and th

Robert Schroll 95 Dec 25, 2022
A lighweight screen color picker tool

tkpick A lighweigt screen color picker tool Availability Only GNU/Linux 🐧 Installing Install via pip (No auto-update): [sudo] pip install tkpick Usa

Adil Gürbüz 7 Aug 30, 2021
Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Dj4w3d H4mm4di 6 May 09, 2022
GitHub saver for stargazers, forks, repos

GitHub backup repositories Save your repos and list of stargazers & list of forks for them. Pure python3 and git with no dependencies to install. GitH

Alexander Kapitanov 23 Aug 21, 2022
Dump Data from FTDI Serial Port to Binary File on MacOS

Dump Data from FTDI Serial Port to Binary File on MacOS

pandy song 1 Nov 24, 2021
The learning agent learns firstly approaching to the football and then kicking the football to the target position

Football Court This project utilized Pytorch and Tensorflow so that the learning agent learns firstly approaching to the football and then kicking the

1 Nov 19, 2021
A small scale relica of bank management system using the MySQL queries in the python language.

Bank_Management_system This is a Bank Management System Database Project. Abstract: The main aim of the Bank Management Mini project is to keep record

Arun Singh Babal 1 Jan 27, 2022
MeepoBenchmark - This project aims at providing the scripts, logs, and analytic results for Meepo Blockchain

MeepoBenchmark - This project aims at providing the scripts, logs, and analytic results for Meepo Blockchain

Peilin Zheng 3 Aug 16, 2022
RFDesign - Protein hallucination and inpainting with RoseTTAFold

RFDesign: Protein hallucination and inpainting with RoseTTAFold Jue Wang (juewan

139 Jan 06, 2023
Demo repository for Saltconf21 talk - Testing strategies for Salt states

Saltconf21 testing strategies Demonstration repository for my Saltconf21 talk "Strategies for testing Salt states" Talk recording Slides and demos Get

Barney Sowood 3 Mar 31, 2022
A tool converting rpk (记乎) to apkg (Anki Package)

RpkConverter This tool is used to convert rpk file to Anki apkg. 如果遇到任何问题,请发起issue,并描述情况。如果转换rpk出现问题,请将文件发到邮箱 ssqyang [AT] outlook.com,我会debug并修复问题。 下

9 Nov 01, 2021