Interactivity Lab: Household Pulse Explorable

Overview

Interactivity Lab: Household Pulse Explorable

Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a curated yet open-ended look at a dataset.

The Household Pulse Survey is a weekly survey run by the US Census Bureau that measures how the coronavirus pandemic is impacting households across the country from a social and economic perspective. It’s a valuable and extensive source of data to gain insight on individuals and families, and one that we will only begin to touch on in today’s lab.

To help a user explore this data interactively, we will build a Streamlit application that displays the results of one Household Pulse Survey, which ran from from September 29 to October 11, 2021.

Part 0: Setup (before class)

Before coming to class, please download this repository, set up your virtual environment of choice, and install the dependencies using pip install -r requirements.txt. Now start the application by typing streamlit run streamlit_app.py. You should see the template code running in the browser!

Part 1: Warmup and generating plots

All your code for this lab should go in the streamlit_app.py script. In this file, you’ll see helper functions (some of which you will fill in) and a section labeled “MAIN CODE.” Most of your code will go in this latter section, which is at the top level of the script and will run from top to bottom to render your Streamlit application.

  1. Let’s get started by printing some data to the browser. Implement the load_data function, which should read the CSV file pulse39.csv and return it. Then, in the main code, use Streamlit’s builtin dataframe component to print the first 10 rows of df. You should see a scrollable table like this:

Screenshot of the dataframe being visualized in Streamlit

To get an idea of the distribution of demographics in this dataset, let’s create some summary plots using Altair. (The dataset includes several demographic features, which are listed in the Appendix at the bottom of this document. You may wish to visualize more of these features if you have time.)

  1. Create Altair bar charts to visualize the distributions of race and education levels in the data. You may want to refer to the Altair documentation as you build your charts. Remember that to render an Altair chart in Streamlit, you must call st.altair_chart(chart) on the Altair chart object.

    Tip: To get the counts of a categorical variable to visualize, you can use the Altair count aggregation, like so:

    chart = alt.Chart(df)...encode(
        x='count()',
        y='
         
          '
         
    )
  2. Make your charts interactive! This is super easy with Altair. Just add .interactive() to the end of your Altair function call, and you should be able to pan and zoom around your chart. You should also create some tooltips to show the numerical data values. To do this, add the tooltip parameter to your encoding, like so:

    chart = alt.Chart(df)...encode(
        ...,
        tooltip=['
         
          '
         ]
    ).interactive()

Examine the summary charts and see if you can get a sense of the distributions in the dataset. Take a minute to discuss with your group: Who is well-represented in this data, and who isn’t? Why might this be the case?

Part 2: Interactive Slicing Tool

Up until now, we’ve only used basic interactivity from Altair. But what if we want to allow the user to choose which data gets plotted? Let’s now build a Streamlit interface that lets the user select a group of interest based on some demographic variables (which we’ll call a “slice”), and compare distributions of outcome variables for people within the slice against people outside of it.

We'll allow the user to slice the data based on the following four demographic variables (don't worry, the code will be similar for most of these):

  • gender (includes transgender and an option for other gender identities)
  • race
  • education (highest education level completed)
  • age (integers ranging from 19 to 89)

Once they've sliced the data, we will visualize a set of vaccination-related outcome variables for people inside and outside the slice:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

If you're interested, the dataset contains a few other sets of outcomes, which you can browse in the Appendix. But for now, let's start slicing!

  1. Decide what controls are best for the user to manipulate each demographic variable. The controls that are supported in Streamlit are listed here.

  2. Build the controls in the “Custom slicing” section of the page. If you run into trouble, refer to the Streamlit docs or ask the TAs! Tip: Take note of how the values are returned from each Streamlit control. You will need this information for the subsequent steps.

  3. Fill in the get_slice_membership function, which builds a Boolean series indicating whether each data point is part of the slice or not. An example of how to do this using gender as a multiselect has already been filled in for you.

  4. Now, use the values returned from each control to create a slice by calling the get_slice_membership function.

  5. Test that your slicing tool is working by writing a line to the page that prints the count and percentage of the data that is contained in the slice. Manipulate some of the controls and check that the size of each slice matches your expectations.

  6. Create visualizations comparing the three outcome variables within the slice to the variables outside the slice. We recommend using an st.metric component to show the vaccination rate and the vaccine intention fields, and a bar chart to show the distribution of reasons for not getting the vaccine.

    Tip: To display the vaccine hesitancy reasons, the dataframe will require some transformation before passing it to Altair. We’ve provided a utility function to help you do this, which you can use like so:

    # Creates a dataframe with columns 'reason' (string) and 'agree' (boolean)
    vaccine_reasons_inslice = make_long_reason_dataframe(df[slice_labels], 'why_no_vaccine_')
    
    chart = alt.Chart(vaccine_reasons_inslice, title='In Slice').mark_bar().encode(
        x='sum(agree)',
        y='reason:O',
    ).interactive()
    # ...

Here is an example of what your slicing tool could look like (here we are using st.columns to make a 2-column layout):

Screenshot of an example showing a comparison of reasons why people are opting not to get the vaccine

With your group, try slicing the data a few different ways. Discuss whether you find any subgroups that have different outcomes than the rest of the population, and see if you can hypothesize why this might be!

Part 3 (bonus): Interactive Random Sampling

If you have time, you can implement another simple interactive function that users will appreciate. While large data exploration tools are powerful ways to see overall trends, the individual stories of people in the dataset can sometimes get lost. Let’s implement a tool to randomly sample from the dataset and portray information relevant to the topic you investigated above.

  1. In the “Person sampling” section, build a button to retrieve a random person.

  2. When the button is pressed, write code to retrieve a random row from the dataset. You can use the pandas.DataFrame.sample function for this.

  3. Display the information from this datapoint in a human-readable way. For example, one possible English description of a datapoint could look like this:

    This person is a 65-year-old Straight, Married Female of White race (non-hispanic). They have not received the vaccine, and their intention to not get the vaccine is 3.0. Their reasons for not getting the vaccine include: Concerned about possible side effects, Don't know if it will protect me, Don't believe I need it, Don't think COVID-19 is a big threat

As in Part 2, feel free to communicate this information in the way that feels most appropriate to you.

Discuss with your group: What do you notice about individual stories generated this way? What are the strengths and drawbacks of sampling and browsing individual datapoints compared to looking at summary visualizations?

Appendix: Dataset Features

Demographic Variables

  • age and age_group (age_group bins the ages into four categories)
  • gender (includes transgender and an option for other gender identities)
  • sexual_orientation
  • marital_status
  • race and hispanic (the US Census defines ‘Hispanic’ as being independent of self-identified race, which is why it is coded as a separate variable)
  • education (highest education level completed)
  • num_children_hhld (the number of children living in the person’s household)
  • had_covid (boolean)

Outcome Variables

Reasons for vaccine hesitancy

To study vaccination rates, people’s intentions to get or not get the vaccine, and their reasons for this, the following columns are available:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

Economic and food insecurity

The dataset includes columns that may be useful to understand people’s levels of financial and food insecurity:

  • expenses_difficulty (scale from 1 - 4, 1 is least difficulty, 4 is most difficulty paying expenses)
  • housing_difficulty (scale from 1 - 4, same as above for paying next rent or mortgage payment)
  • food_difficulty (scale from 1 - 4, same as above for having enough food)
  • why_not_enough_food_ (four boolean columns indicating whether the person experienced each reason for not having enough food. Note that multiple reasons can be selected)

Mental health

The dataset also includes some columns for understanding people’s recent mental health status:

  • freq_anxiety, freq_worry, freq_little_interest, freq_depressed (scale from 1 - 4 where 1 indicates not at all, 4 indicates nearly every day in the past two weeks)
  • mh_prescription_meds (boolean whether the person has taken prescription medication for mental health)
  • mh_services (boolean whether the person has received mental health services in the past month)
  • mh_notget (boolean whether the person sought mental health services but did not receive them)
CaskDB is a disk-based, embedded, persistent, key-value store based on the Riak's bitcask paper, written in Python.

CaskDB - Disk based Log Structured Hash Table Store CaskDB is a disk-based, embedded, persistent, key-value store based on the Riak's bitcask paper, w

886 Dec 27, 2022
ThnoolBox - A thneed is a multi-use versatile object

ThnoolBox Have you ever wanted a collection of bodged desktop apps that are Lorax themed ? No ? Sucks to suck I guess Apps & their downsides CalculaTh

pocoyo 1 Jan 21, 2022
A Python simple Dice Simulator just for fun

Dice Simulator 🎲 A Simple Python Dice Simulator 🧩 🎮 💭 Description: That program make your RPG session more easy and simple. Roll the dice never be

Lauro Brant 17 May 14, 2022
Flow control is the order in which statements or blocks of code are executed at runtime based on a condition. Learn Conditional statements, Iterative statements, and Transfer statements

03_Python_Flow_Control Introduction 👋 The control flow statements are an essential part of the Python programming language. A control flow statement

Milaan Parmar / Милан пармар / _米兰 帕尔马 209 Oct 31, 2022
Model synchronization from dbt to Metabase.

dbt-metabase Model synchronization from dbt to Metabase. If dbt is your source of truth for database schemas and you use Metabase as your analytics to

Mike Gouline 270 Jan 08, 2023
Meliodas Official 1.4 BombSquad Server Scripts

Noxious-Official-1.4-BombSquad-Server-Scripts Scripts Are Provided By Sparxtn Somewhat Edited By Me Scripts are Working Fine Just Download & Use It Be

Meliodas♡ 2 Oct 16, 2022
Tiny demo site for exploring SameSite=Lax

samesite-lax-demo Background on my blog: Exploring the SameSite cookie attribute for preventing CSRF This repo holds some tools for exploring the impl

Simon Willison 6 Nov 10, 2021
The Google Assistant on a rotary phone

Google Assistant Rotary Phone Shoutout to my dad who had this idea a year ago and I'm only now getting around to doing it. Notes This is the code used

rydercalmdown 10 Nov 04, 2022
The third home of the bare Programming Language (1st there's my heart, the forest came second and then there's Github :)

The third home of the bare Programming Language (1st there's my heart, the forest came second and then there's Github :)

Garren Souza 7 Dec 24, 2022
Shows VRML team stats of all players in your pubs

VRML Team Stat Searcher Displays Team Name, Team Rank (Worldwide), and tier of all the players in your pubs. GUI WIP: Only username search works (for

Hamish Burke 2 Dec 22, 2022
Return-Parity-MDP - Towards Return Parity in Markov Decision Processes

Towards Return Parity in Markov Decision Processes Code for the AISTATS 2022 pap

Jianfeng Chi 3 Nov 27, 2022
Track testrail productivity in automated reporting to multiple teams

django_web_app_for_testrail testrail is a test case management tool which helps any organization to track all consumption and testing of manual and au

Vignesh 2 Nov 21, 2021
Displays Christmas-themed ASCII art

Christmas Color Scripts Displays Christmas-themed ASCII art. This was mainly inspired by DistroTube's Shell Color Scripts Screenshots ASCII Shadow Tex

1 Aug 09, 2022
Covid-ChatBot - A Rapid Response Virtual Agent for Covid-19 Queries

COVID-19 CHatBot A Rapid Response Virtual Agent for Covid-19 Queries Contents What is ChatBot Types of ChatBots About the Project Dataset Prerequisite

NelakurthiSudheer 2 Jan 04, 2022
A basic tic tac toe game on python!

A basic tic tac toe game on python!

Shubham Kumar Chandrabansi 1 Nov 18, 2021
Here is my Senior Design Project that I implemented to graduate from Computer Engineering.

Here is my Senior Design Project that I implemented to graduate from Computer Engineering. It is a chatbot made in RASA and helps the user to plan their vacation in the Turkish language. In order to

Ezgi Subaşı 25 May 31, 2022
This repo is related to Google Coding Challenge, given to Bright Network Internship Experience 2021.

BrightNetworkUK-GCC-2021 This repo is related to Google Coding Challenge, given to Bright Network Internship Experience 2021. Language used here is py

Dareer Ahmad Mufti 28 May 23, 2022
Scripts to convert the Ted-MDB corpora into the formats for DISRPT shared task and the converted corpora

Scripts to convert the Ted-MDB corpora into the formats for DISRPT shared task and the converted corpora.

1 Feb 08, 2022
Socorro is the Mozilla crash ingestion pipeline. It accepts and processes Breakpad-style crash reports. It provides analysis tools.

Socorro Socorro is a Mozilla-centric ingestion pipeline and analysis tools for crash reports using the Breakpad libraries. Support This is a Mozilla-s

Mozilla Services 552 Dec 19, 2022
Airplane reservation system python 2

airplane-reservation-system-python-2 Announcement 🔊 : 🔴 IMPORTANT 🔴 : Few new things have been added into the code [16/05/2021] different names is

voyager2005 1 Dec 06, 2021