Covid-ChatBot - A Rapid Response Virtual Agent for Covid-19 Queries

Overview

COVID-19 CHatBot

A Rapid Response Virtual Agent for Covid-19 Queries

Contents

  1. What is ChatBot
  2. Types of ChatBots
  3. About the Project
  4. Dataset
  5. Prerequisites
  6. Building a Chatbot

1. What is ChatBot

A chatbot is an intelligent piece of software that is capable of communicating and performing actions similar to a human. Chatbots are used a lot in customer interaction, marketing on social network sites and instantly messaging the client.second

2. Types of CHatBots

There are two basic types of chatbot models based on how they are built; Retrieval based and Generative based models.

  • Retrieval based Chatbots
    A retrieval-based chatbot uses predefined input patterns and responses. It then uses some type of heuristic approach to select the appropriate response. It is widely used in the industry to make goal-oriented chatbots where we can customize the tone and flow of the chatbot to drive our customers with the best experience.
  • Generative based Chatbots
    Generative models are not based on some predefined responses.
    They are based on seq 2 seq neural networks. It is the same idea as machine translation. In machine translation, we translate the source code from one language to another language but here, we are going to transform input into an output. It needs a large amount of data and it is based on Deep Neural networks.

3. About the Project

In this Python and NLP project, we have build a chatbot using deep learning techniques. The chatbot will be trained on the dataset which contains categories (intents), pattern and responses. We used a special recurrent neural network (LSTM) to classify which category the user’s message belongs to and then we will give a random response from the list of responses. Let’s see how to create a retrieval based chatbot using NLTK, Keras, Python, etc.

4. Dataset

The dataset we have used is ‘intents.json’. This is a JSON file that contains the patterns we need to find and the responses we want to return to the user.

5. Prerequisites

The project requires you to have good knowledge of Python, Keras, and Natural language processing (NLTK). Along with them, we will use some helping modules which you can download using the python-pip command. Some basic Git commands are:

pip install tensorflow, keras, pickle, nltk

6. Building a ChatBot

  • Intents.json – The data file which has predefined patterns and responses.
  • train_chatbot.py – In this Python file, we wrote a script to build the model and train our chatbot.
  • Words.pkl – This is a pickle file in which we store the words Python object that contains a list of our vocabulary.
  • Classes.pkl – The classes pickle file contains the list of categories.
  • Chatbot_model.h5 – This is the trained model that contains information about the model and has weights of the neurons.
  • Chatgui.py – This is the Python script in which we implemented GUI for our chatbot. Users can easily interact with the bot.

Please follow the following steps to create the project

1. Import and load the data file

First, make a file name as train_chatbot.py. We import the necessary packages for our chatbot and initialize the variables we will use in our Python project. The data file is in JSON format so we used the json package to parse the JSON file into Python.
intents-data-file

2. Preprocess data

When working with text data, we need to perform various preprocessing on the data before we make a machine learning or a deep learning model. Based on the requirements we need to apply various operations to preprocess the data.
Tokenizing is the most basic and first thing you can do on text data. Tokenizing is the process of breaking the whole text into small parts like words.
Here we iterate through the patterns and tokenize the sentence using nltk.word_tokenize() function and append each word in the words list. We also create a list of classes for our tags.

for intent in intents['intents']:
    for pattern in intent['patterns']:

        #tokenize each word
        w = nltk.word_tokenize(pattern)
        words.extend(w)
        #add documents in the corpus
        documents.append((w, intent['tag']))

        # add to our classes list
        if intent['tag'] not in classes:
            classes.append(intent['tag'])

Now we will lemmatize each word and remove duplicate words from the list. Lemmatizing is the process of converting a word into its lemma form and then creating a pickle file to store the Python objects which we will use while predicting.

# lemmatize, lower each word and remove duplicates
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
# sort classes
classes = sorted(list(set(classes)))
# documents = combination between patterns and intents
print (len(documents), "documents")
# classes = intents
print (len(classes), "classes", classes)
# words = all words, vocabulary
print (len(words), "unique lemmatized words", words)

pickle.dump(words,open('words.pkl','wb'))
pickle.dump(classes,open('classes.pkl','wb'))

3. Create training and testing data

Now, we will create the training data in which we will provide the input and the output. Our input will be the pattern and output will be the class our input pattern belongs to. But the computer doesn’t understand text so we will convert text into numbers.

# create our training data
training = []
# create an empty array for our output
output_empty = [0] * len(classes)
# training set, bag of words for each sentence
for doc in documents:
    # initialize our bag of words
    bag = []
    # list of tokenized words for the pattern
    pattern_words = doc[0]
    # lemmatize each word - create base word, in attempt to represent related words
    pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
    # create our bag of words array with 1, if word match found in current pattern
    for w in words:
        bag.append(1) if w in pattern_words else bag.append(0)

    # output is a '0' for each tag and '1' for current tag (for each pattern)
    output_row = list(output_empty)
    output_row[classes.index(doc[1])] = 1

    training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists. X - patterns, Y - intents
train_x = list(training[:,0])
train_y = list(training[:,1])
print("Training data created")

4. Build the model

We have our training data ready, now we will build a deep neural network that has 3 layers. We use the Keras sequential API for this. After training the model for 200 epochs, we achieved 100% accuracy on our model.

# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
# equal to number of intents to predict output intent with softmax
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))

# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

#fitting and saving the model 
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)

print("model created")

5. Predict the response( Graphical User Interface)

To predict the sentences and get a response from the user to let us create a new file ‘chatapp.py’.

We will load the trained model and then use a graphical user interface that will predict the response from the bot. The model will only tell us the class it belongs to, so we will implement some functions which will identify the class and then retrieve us a random response from the list of responses.

Again we import the necessary packages and load the ‘words.pkl’ and ‘classes.pkl’ pickle files which we have created when we trained our model:

import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np

from keras.models import load_model
model = load_model('chatbot_model.h5')
import json
import random
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl','rb'))
classes = pickle.load(open('classes.pkl','rb'))

To predict the class, we will need to provide input in the same way as we did while training. So we will create some functions that will perform text preprocessing and then predict the class.

def clean_up_sentence(sentence):
    # tokenize the pattern - split words into array
    sentence_words = nltk.word_tokenize(sentence)
    # stem each word - create short form for word
    sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
    return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence

def bow(sentence, words, show_details=True):
    # tokenize the pattern
    sentence_words = clean_up_sentence(sentence)
    # bag of words - matrix of N words, vocabulary matrix
    bag = [0]*len(words) 
    for s in sentence_words:
        for i,w in enumerate(words):
            if w == s: 
                # assign 1 if current word is in the vocabulary position
                bag[i] = 1
                if show_details:
                    print ("found in bag: %s" % w)
    return(np.array(bag))

def predict_class(sentence, model):
    # filter out predictions below a threshold
    p = bow(sentence, words,show_details=False)
    res = model.predict(np.array([p]))[0]
    ERROR_THRESHOLD = 0.25
    results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
    # sort by strength of probability
    results.sort(key=lambda x: x[1], reverse=True)
    return_list = []
    for r in results:
        return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
    return return_list

After predicting the class, we will get a random response from the list of intents.

def getResponse(ints, intents_json):
    tag = ints[0]['intent']
    list_of_intents = intents_json['intents']
    for i in list_of_intents:
        if(i['tag']== tag):
            result = random.choice(i['responses'])
            break
    return result

def chatbot_response(text):
    ints = predict_class(text, model)
    res = getResponse(ints, intents)
    return res

Now we will develop a graphical user interface. Let’s use Tkinter library which is shipped with tons of useful libraries for GUI. We will take the input message from the user and then use the helper functions we have created to get the response from the bot and display it on the GUI.

6. Run the chatbot

To run the chatbot, we have two main files; train_chatbot.py and chatapp.py.
First, we train the model using the command in the terminal:

python train_chatbot.py

If we don’t see any error during training, we have successfully created the model. Then to run the app, we run the second file.

python chatgui.py

The program will open up a GUI window within a few seconds. With the GUI you can easily chat with the bot.

Owner
NelakurthiSudheer
Data Scientist | Kaggle Participant | Web Developer | MachineHack
NelakurthiSudheer
API Rate Limit Decorator

ratelimit APIs are a very common way to interact with web services. As the need to consume data grows, so does the number of API calls necessary to re

Tomas Basham 574 Dec 26, 2022
Meilleur outil de hacking Zapp en 2021 pour Termux

WhatsApp-Tool Meilleur outil de hacking Zapp en 2021 pour Termux Cet outil est le seul prennant en compte les dernières mises à jour de WhatsApp. FONC

2 Aug 17, 2022
Make your functions return something meaningful, typed, and safe!

Make your functions return something meaningful, typed, and safe! Features Brings functional programming to Python land Provides a bunch of primitives

dry-python 2.5k Jan 03, 2023
Um Script De Mensagem anonimas Para linux e Termux Feito em python

Um Script De Mensagem anonimas Para linux e Termux Feito em python feito em um celular

6 Sep 09, 2021
Radiosonde Telemetry Decoders

Radiosonde Telemetry Frame Decoders This repository is an attempt to collate the various sources of information on how to decode radiosonde telemetry

Project Horus 3 Jan 04, 2022
Contain the customization I made for my Linux rice.

dotfiles Contain the customization I made for my Linux rice. Credit and Respect Polybar Autohide Fulltime Rofi by adi1090x (only include my personal r

sora 3 Apr 04, 2022
Ant Colony Optimization for Traveling Salesman Problem

tsp-aco Ant Colony Optimization for Traveling Salesman Problem Dependencies Python 3.8 tqdm numpy matplotlib To run the solver run main.py from the p

Baha Eren YALDIZ 4 Feb 03, 2022
Example of my qtile config using the gruvbox colorscheme.

QTILE config Example of my qtile config using the gruvbox colorscheme. unicodes.py unicodes.py returns a widget.TextBox with a unicode. Currently it c

Imanuel Febie 31 Jan 02, 2023
Catalogue CRUD Application

This Python program creates a relational SQL database hosted on the Snowflake platform, then opens a CRUD GUI to manipulate and view the data. In this application, it is used as a book catalogue. CUR

0 Dec 13, 2022
Run the Tianxunet software on the Xiaoyao Android simulator

Run the Tianxunet software on the Xiaoyao Android simulator, and automatically fill in the answers of English listening on the premise of having answers

1 Feb 13, 2022
Automatización del proceso Inmofianza

Selenium Inmofianza Proyecto de pruebas automatizadas con selenium webdriver para el aplicativo Omnicanalidad Pre-requisitos 📋 Componentes que deben

Natalia Narváez 1 Jan 07, 2022
Cobalt Strike Sleep Python Bridge

This project is 'bridge' between the sleep and python language. It allows the control of a Cobalt Strike teamserver through python without the need for for the standard GUI client. NOTE: This project

Cobalt Strike 140 Jan 04, 2023
一个可以自动生成PTGen,MediaInfo,截图,并且生成发布所需内容的脚本

Differential 差速器 一个可以自动生成PTGen,MediaInfo,截图,并且生成发种所需内容的脚本 为什么叫差速器 差速器是汽车上的一种能使左、右轮胎以不同转速转动的结构。使用同样的动力输入,差速器能够输出不同的转速。就如同这个工具之于PT资源,差速器帮你使用同一份资源,输出不同PT

Lei Shi 96 Dec 15, 2022
An improved version of the common ˙pacman -S˙

BetterPacmanLook An improved version of the common pacman -S. Installation I know that this is probably one of the worst solutions and i will be worki

1 Nov 06, 2021
Modelling the 30 salamander problem from `Pure Mathematics` by Martin Liebeck

Salamanders on an island The Problem From A Concise Introduction to Pure Mathematics By Martin Liebeck Critic Ivor Smallbrain is watching the horror m

Faisal Jina 1 Jul 10, 2022
Flight Reservation App With Python

Flight Reservation App With Python

victor-h. 1 Nov 21, 2021
flake8 plugin which checks that there is no use of sleep in the code.

flake8-sleep flake8 plugin which checks for use of sleep function. installation Using Pypi: pip install flake8-sleep flake8 codes Code Description SLP

1 Nov 26, 2021
CRC Reverse Engineering Tool in Python

CRC Beagle CRC Beagle is a tool for reverse engineering CRCs. It is designed for commnication protocols where you often have several messages of the s

Colin O'Flynn 51 Jan 05, 2023
A platform for developers 👩‍💻 who wants to share their programs and projects.

Fest-Practice-2021 This project is excluded from Hacktoberfest 2021. Please use this as a testing repo/project. A platform for developers 👩‍💻 who wa

Mayank Choudhary 40 Nov 07, 2022
Sudoku solver using backtracking

Sudoku solver Sudoku solver using backtracking Basically in sudoku, we want to be able to solve a sudoku puzzle given an input like this, which repres

Kylie 99 Jan 07, 2023