当前位置:网站首页>Paper notes: knowledge map kgat (unfinished temporary storage)
Paper notes: knowledge map kgat (unfinished temporary storage)
2022-07-26 09:18:00 【Min fan】
Abstract : Share your understanding of the paper . See the original X. Wang et al., KGAT: Knowledge Graph Attention Network for Recommendation, KDD 2019.
0. Contribution of thesis
- In the collaborative knowledge map (Collaborative knowledge graph) Modeling high-order relationships is shown in , Use project information for better recommendation system modeling .
- Propose a new method KGAT, Provide a high-order model under the framework of graph neural network .
- Fast and good .
- Provide code : https://github.com/xiangwang1223/knowledge_graph_attention_network.
1. Basic ideas

user And user, user And item The relationship between has certain transitivity . The number of passes is the corresponding order (order). order = 3 when , u 1 u_1 u1 And i 3 i_3 i3 and i 4 i_4 i4 Link ; order = 4 when , u 1 u_1 u1 And u 2 , u 3 u_2, u_3 u2,u3 Link .
2. Problem modeling
| Symbol | meaning | remarks |
|---|---|---|
| U \mathcal{U} U | User set | |
| I \mathcal{I} I | Project collection | |
| G 1 \mathcal{G}_1 G1 | user - The second part of the project | G 1 ⊆ U × I \mathcal{G}_1 \subseteq \mathcal{U} \times \mathcal{I} G1⊆U×I, It can be considered as a directed graph |
| E \mathcal{E} E | Set of entities | It can be a user or a project |
| R \mathcal{R} R | Relational sets | |
| G 2 \mathcal{G}_2 G2 | Knowledge map | G 2 ⊆ E × R × E \mathcal{G}_2 \subseteq \mathcal{E} \times \mathcal{R} \times \mathcal{E} G2⊆E×R×E, It's a digraph |
| A \mathcal{A} A | Project entity alignment | A ⊂ I × E \mathcal{A} \subset \mathcal{I} \times \mathcal{E} A⊂I×E |
| G \mathcal{G} G | Unified knowledge map | G ⊆ E ′ × R ′ × E ′ \mathcal{G} \subseteq \mathcal{E}' \times \mathcal{R}' \times \mathcal{E}' G⊆E′×R′×E′ |
| E ′ \mathcal{E}' E′ | All entities | E ′ = E ∪ U \mathcal{E}' = \mathcal{E} \cup \mathcal{U} E′=E∪U, Include users 、 project 、 Project properties |
| − r -r −r | The reverse of the relationship | The movie By Starring actors |
user - The second part of the project .
{ ( u , y u i , i ) ∣ u ∈ U , i ∈ I } \{(u, y_{ui}, i) \vert u \in \mathcal{U}, i \in \mathcal{I}\} {(u,yui,i)∣u∈U,i∈I}, y u i = 1 y_{ui} = 1 yui=1 Indicates that the user is associated with the project ( Watching the film 、 Bought goods ).
Make complaints : People who engage in machine learning can write this model , Obviously, it is a common figure , No need at all y u i y_{ui} yui.Project knowledge map
{ ( h , r , t ) ∣ h , t ∈ E , r ∈ R ) } \{(h, r, t) \vert h, t \in \mathcal{E}, r \in \mathcal{R})\} {(h,r,t)∣h,t∈E,r∈R)}.Project entity alignment
A = { ( i , e ) ∣ i ∈ I , e ∈ E } \mathcal{A} = \{(i, e) \vert i \in \mathcal{I}, e \in \mathcal{E}\} A={(i,e)∣i∈I,e∈E} Mistake . Actually A \mathcal{A} A Is a subset of the latter .Problem description
Input : Collaborative knowledge map G \mathcal{G} G;
Output : y ^ u i \hat{y}_{ui} y^ui, The user u u u And projects i i i Related ( like , Want to buy ) The possibility of .
3. Method
The embedded (embedding) Learning a vector for each entity , Used to indicate it .
After embedding , You can use the distance between vectors to calculate the similarity of entities ( Relevance ).
4. doubt
- It is clearly a three part graph ( user 、 project 、 attribute ), Why do we have to make a bipartite picture of users and projects , And make items and attributes into a knowledge map ?
边栏推荐
猜你喜欢

【线上问题】Timeout waiting for connection from pool 问题排查

Does volatile rely on the MESI protocol to solve the visibility problem? (next)

Elastic APM安装和使用

【Mysql】认识Mysql重要架构(一)

Grain College of all learning source code

Matlab 绘制阴影误差图

CSDN Top1 "how does a Virgo procedural ape" become a blogger with millions of fans through writing?

多项式开根

Nuxt - Project packaging deployment and online to server process (SSR server rendering)

高数 | 武爷『经典系列』每日一题思路及易错点总结
随机推荐
2022化工自动化控制仪表操作证考试题模拟考试平台操作
Voice chat app source code - Nath live broadcast system source code
“No input file specified “问题的处理
Zipkin安装和使用
垂直搜索
Windows通过命令备份数据库到本地
NTT (fast number theory transformation) polynomial inverse 1500 word analysis
codeforces dp合集
对标注文件夹进行清洗
Grain College of all learning source code
PAT 甲级 A1013 Battle Over Cities
堆外内存的使用
Error: Cannot find module ‘umi‘ 问题处理
volatile 靠的是MESI协议解决可见性问题?(上)
C# Serialport的发送和接收
Polynomial open root
【Mysql】redo log,undo log 和binlog详解(四)
Two tips for pycharm to open multiple projects
ONTAP 9文件系统的限制
Li Mu D2L (IV) -- softmax regression