Python client for the Socrata Open Data API

Overview

PyPI version Build Status Code Coverage

sodapy

sodapy is a python client for the Socrata Open Data API.

Installation

You can install with pip install sodapy.

If you want to install from source, then clone this repository and run python setup.py install from the project root.

Requirements

At its core, this library depends heavily on the Requests package. All other requirements can be found in requirements.txt. sodapy is currently compatible with Python 3.5, 3.6, 3.7 and 3.8.

Documentation

The official Socrata Open Data API docs provide thorough documentation of the available methods, as well as other client libraries. A quick list of eligible domains to use with this API is available via the Socrata Discovery API or Socrata's Open Data Network.

This library supports writing directly to datasets with the Socrata Open Data API. For write operations that use data transformations in the Socrata Data Management Experience (the user interface for creating datasets), use the Socrata Data Management API. For more details on when to use SODA vs the Data Management API, see the Data Management API documentation. A Python SDK for the Socrata Data Management API can be found at socrata-py.

Examples

There are some jupyter notebooks in the examples directory with usage examples of sodapy in action.

Interface

Table of Contents

client

Import the library and set up a connection to get started.

>>> from sodapy import Socrata
>>> client = Socrata(
        "sandbox.demo.socrata.com",
        "FakeAppToken",
        username="[email protected]",
        password="mypassword",
        timeout=10
    )

username and password are only required for creating or modifying data. An application token isn't strictly required (can be None), but queries executed from a client without an application token will be subjected to strict throttling limits. You may want to increase the timeout seconds when making large requests. To create a bare-bones client:

>>> client = Socrata("sandbox.demo.socrata.com", None)

A client can also be created with a context manager to obviate the need for teardown:

>>> with Socrata("sandbox.demo.socrata.com", None) as client:
>>>    # do some stuff

The client, by default, makes requests over HTTPS. To modify this behavior, or to make requests through a proxy, take a look here.

datasets(limit=0, offset=0)

Retrieve datasets associated with a particular domain. The optional limit and offset keyword args can be used to retrieve a subset of the datasets. By default, all datasets are returned.

>>> client.datasets()
[{"resource" : {"name" : "Approved Building Permits", "id" : "msk6-43c6", "parent_fxf" : null, "description" : "Data of approved building/construction permits",...}, {resource : {...}}, ...]

get(dataset_identifier, content_type="json", **kwargs)

Retrieve data from the requested resources. Filter and query data by field name, id, or using SoQL keywords.

>>> client.get("nimj-3ivp", limit=2)
[{u'geolocation': {u'latitude': u'41.1085', u'needs_recoding': False, u'longitude': u'-117.6135'}, u'version': u'9', u'source': u'nn', u'region': u'Nevada', u'occurred_at': u'2012-09-14T22:38:01', u'number_of_stations': u'15', u'depth': u'7.60', u'magnitude': u'2.7', u'earthquake_id': u'00388610'}, {...}]

>>> client.get("nimj-3ivp", where="depth > 300", order="magnitude DESC", exclude_system_fields=False)
[{u'geolocation': {u'latitude': u'-15.563', u'needs_recoding': False, u'longitude': u'-175.6104'}, u'version': u'9', u':updated_at': 1348778988, u'number_of_stations': u'275', u'region': u'Tonga', u':created_meta': u'21484', u'occurred_at': u'2012-09-13T21:16:43', u':id': 132, u'source': u'us', u'depth': u'328.30', u'magnitude': u'4.8', u':meta': u'{\n}', u':updated_meta': u'21484', u'earthquake_id': u'c000cnb5', u':created_at': 1348778988}, {...}]

>>> client.get("nimj-3ivp/193", exclude_system_fields=False)
{u'geolocation': {u'latitude': u'21.6711', u'needs_recoding': False, u'longitude': u'142.9236'}, u'version': u'C', u':updated_at': 1348778988, u'number_of_stations': u'136', u'region': u'Mariana Islands region', u':created_meta': u'21484', u'occurred_at': u'2012-09-13T11:19:07', u':id': 193, u'source': u'us', u'depth': u'300.70', u'magnitude': u'4.4', u':meta': u'{\n}', u':updated_meta': u'21484', u':position': 193, u'earthquake_id': u'c000cmsq', u':created_at': 1348778988}

>>> client.get("nimj-3ivp", region="Kansas")
[{u'geolocation': {u'latitude': u'38.10', u'needs_recoding': False, u'longitude': u'-100.6135'}, u'version': u'9', u'source': u'nn', u'region': u'Kansas', u'occurred_at': u'2010-09-19T20:52:09', u'number_of_stations': u'15', u'depth': u'300.0', u'magnitude': u'1.9', u'earthquake_id': u'00189621'}, {...}]

get_all(dataset_identifier, content_type="json", **kwargs)

Read data from the requested resource, paginating over all results. Accepts the same arguments as get(). Returns a generator.

>>> client.get_all("nimj-3ivp")
<generator object Socrata.get_all at 0x7fa0dc8be7b0>

>>> for item in client.get_all("nimj-3ivp"):
...     print(item)
...
{'geolocation': {'latitude': '-15.563', 'needs_recoding': False, 'longitude': '-175.6104'}, 'version': '9', ':updated_at': 1348778988, 'number_of_stations': '275', 'region': 'Tonga', ':created_meta': '21484', 'occurred_at': '2012-09-13T21:16:43', ':id': 132, 'source': 'us', 'depth': '328.30', 'magnitude': '4.8', ':meta': '{\n}', ':updated_meta': '21484', 'earthquake_id': 'c000cnb5', ':created_at': 1348778988}
...

>>> import itertools
>>> items = client.get_all("nimj-3ivp")
>>> first_five = list(itertools.islice(items, 5))
>>> len(first_five)
5

get_metadata(dataset_identifier, content_type="json")

Retrieve the metadata associated with a particular dataset.

>>> client.get_metadata("nimj-3ivp")
{"newBackend": false, "licenseId": "CC0_10", "publicationDate": 1436655117, "viewLastModified": 1451289003, "owner": {"roleName": "administrator", "rights": [], "displayName": "Brett", "id": "cdqe-xcn5", "screenName": "Brett"}, "query": {}, "id": "songs", "createdAt": 1398014181, "category": "Public Safety", "publicationAppendEnabled": true, "publicationStage": "published", "rowsUpdatedBy": "cdqe-xcn5", "publicationGroup": 1552205, "displayType": "table", "state": "normal", "attributionLink": "http://foo.bar.com", "tableId": 3523378, "columns": [], "metadata": {"rdfSubject": "0", "renderTypeConfig": {"visible": {"table": true}}, "availableDisplayTypes": ["table", "fatrow", "page"], "attachments": ... }}

update_metadata(dataset_identifier, update_fields, content_type="json")

Update the metadata for a particular dataset. update_fields should be a dictionary containing only the metadata keys that you wish to overwrite.

Note: Invalid payloads to this method could corrupt the dataset or visualization. See this comment for more information.

>>> client.update_metadata("nimj-3ivp", {"attributionLink": "https://anothertest.com"})
{"newBackend": false, "licenseId": "CC0_10", "publicationDate": 1436655117, "viewLastModified": 1451289003, "owner": {"roleName": "administrator", "rights": [], "displayName": "Brett", "id": "cdqe-xcn5", "screenName": "Brett"}, "query": {}, "id": "songs", "createdAt": 1398014181, "category": "Public Safety", "publicationAppendEnabled": true, "publicationStage": "published", "rowsUpdatedBy": "cdqe-xcn5", "publicationGroup": 1552205, "displayType": "table", "state": "normal", "attributionLink": "https://anothertest.com", "tableId": 3523378, "columns": [], "metadata": {"rdfSubject": "0", "renderTypeConfig": {"visible": {"table": true}}, "availableDisplayTypes": ["table", "fatrow", "page"], "attachments": ... }}

download_attachments(dataset_identifier, content_type="json", download_dir="~/sodapy_downloads")

Download all attachments associated with a dataset. Return a list of paths to the downloaded files.

>>> client.download_attachments("nimj-3ivp", download_dir="~/Desktop")
    ['/Users/xmunoz/Desktop/nimj-3ivp/FireIncident_Codes.PDF', '/Users/xmunoz/Desktop/nimj-3ivp/AccidentReport.jpg']

create(name, **kwargs)

Create a new dataset. Optionally, specify keyword args such as:

  • description description of the dataset
  • columns list of fields
  • category dataset category (must exist in /admin/metadata)
  • tags list of tag strings
  • row_identifier field name of primary key
  • new_backend whether to create the dataset in the new backend

Example usage:

>>> columns = [{"fieldName": "delegation", "name": "Delegation", "dataTypeName": "text"}, {"fieldName": "members", "name": "Members", "dataTypeName": "number"}]
>>> tags = ["politics", "geography"]
>>> client.create("Delegates", description="List of delegates", columns=columns, row_identifier="delegation", tags=tags, category="Transparency")
{u'id': u'2frc-hyvj', u'name': u'Foo Bar', u'description': u'test dataset', u'publicationStage': u'unpublished', u'columns': [ { u'name': u'Foo', u'dataTypeName': u'text', u'fieldName': u'foo', ... }, { u'name': u'Bar', u'dataTypeName': u'number', u'fieldName': u'bar', ... } ], u'metadata': { u'rowIdentifier': 230641051 }, ... }

publish(dataset_identifier, content_type="json")

Publish a dataset after creating it, i.e. take it out of 'working copy' mode. The dataset id id returned from create will be used to publish.

>>> client.publish("2frc-hyvj")
{u'id': u'2frc-hyvj', u'name': u'Foo Bar', u'description': u'test dataset', u'publicationStage': u'unpublished', u'columns': [ { u'name': u'Foo', u'dataTypeName': u'text', u'fieldName': u'foo', ... }, { u'name': u'Bar', u'dataTypeName': u'number', u'fieldName': u'bar', ... } ], u'metadata': { u'rowIdentifier': 230641051 }, ... }

set_permission(dataset_identifier, permission="private", content_type="json")

Set the permissions of a dataset to public or private.

>>> client.set_permission("2frc-hyvj", "public")
<Response [200]>

upsert(dataset_identifier, payload, content_type="json")

Create a new row in an existing dataset.

>>> data = [{'Delegation': 'AJU', 'Name': 'Alaska', 'Key': 'AL', 'Entity': 'Juneau'}]
>>> client.upsert("eb9n-hr43", data)
{u'Errors': 0, u'Rows Deleted': 0, u'Rows Updated': 0, u'By SID': 0, u'Rows Created': 1, u'By RowIdentifier': 0}

Update/Delete rows in a dataset.

>>> data = [{'Delegation': 'sfa', ':id': 8, 'Name': 'bar', 'Key': 'doo', 'Entity': 'dsfsd'}, {':id': 7, ':deleted': True}]
>>> client.upsert("eb9n-hr43", data)
{u'Errors': 0, u'Rows Deleted': 1, u'Rows Updated': 1, u'By SID': 2, u'Rows Created': 0, u'By RowIdentifier': 0}

upsert's can even be performed with a csv file.

>>> data = open("upsert_test.csv")
>>> client.upsert("eb9n-hr43", data)
{u'Errors': 0, u'Rows Deleted': 0, u'Rows Updated': 1, u'By SID': 1, u'Rows Created': 0, u'By RowIdentifier': 0}

replace(dataset_identifier, payload, content_type="json")

Similar in usage to upsert, but overwrites existing data.

>>> data = open("replace_test.csv")
>>> client.replace("eb9n-hr43", data)
{u'Errors': 0, u'Rows Deleted': 0, u'Rows Updated': 0, u'By SID': 0, u'Rows Created': 12, u'By RowIdentifier': 0}

create_non_data_file(params, file_obj)

Creates a new file-based dataset with the name provided in the files tuple. A valid file input would be:

files = (
    {'file': ("gtfs2", open('myfile.zip', 'rb'))}
)
>>> with open(nondatafile_path, 'rb') as f:
>>>     files = (
>>>         {'file': ("nondatafile.zip", f)}
>>>     )
>>>     response = client.create_non_data_file(params, files)

replace_non_data_file(dataset_identifier, params, file_obj)

Same as create_non_data_file, but replaces a file that already exists in a file-based dataset.

Note: a table-based dataset cannot be replaced by a file-based dataset. Use create_non_data_file in order to replace.

>>>  with open(nondatafile_path, 'rb') as f:
>>>      files = (
>>>          {'file': ("nondatafile.zip", f)}
>>>      )
>>>      response = client.replace_non_data_file(DATASET_IDENTIFIER, {}, files)

delete(dataset_identifier, row_id=None, content_type="json")

Delete an individual row.

>>> client.delete("nimj-3ivp", row_id=2)
<Response [200]>

Delete the entire dataset.

>>> client.delete("nimj-3ivp")
<Response [200]>

close()

Close the session when you're finished.

>>> client.close()

Run tests

$ pytest

Contributing

See CONTRIBUTING.md.

Meta

This package uses semantic versioning.

Source and wheel distributions are available on PyPI. Here is how I create those releases.

python3 setup.py bdist_wheel
python3 setup.py sdist
twine upload dist/*
Owner
Cristina
ACAB
Cristina
IdeasBot - Funny telegram bot to generate ideas for a project

Repository of PIdeas_bot About Funny telegram bot for generating projects ideas.

Just Koala 5 Oct 16, 2022
Telegram music & video bot direct play music

Telegram music & video bot direct play music

noinoi-X 1 Dec 28, 2021
Lazy airdrop based on private temporary ids

LobsterDAO This uses a modified MerkleDistributor, which allows to issue a lazy airdrop using temporary IDs. In this example it uses Telegram chat_id

41 Sep 10, 2022
Discord group chat spammer concept.

GC Spammer [Concept] GC-Spammer for https://discord.com/ Warning: This is purely a concept. In the past the script worked, however, Discord ratelimite

Roover 3 Feb 28, 2022
A Telegram bot for combining emojis.

combimoji combimoji is a Telegram bot for combining emojis. How can I use it? You can find combimoji at @combimoji_bot, however it is not up (as of No

Yarema Mishchenko 2 Dec 02, 2021
Using GNU Radio and HackRF One to Receive, Analyze and Send ASK/OOK signals

play_with_ask NIS-8016 Lab A code: Recv.grc/py: Receive signals and match with ASK button using HackRF and GNU radio. I use AM demod block(can also in

Chen Anxue 1 Jul 04, 2022
fair-test is a library to build and deploy FAIR metrics tests APIs supporting the specifications used by the FAIRMetrics working group.

☑️ FAIR test fair-test is a library to build and deploy FAIR metrics tests APIs supporting the specifications used by the FAIRMetrics working group. I

Maastricht University IDS 6 Oct 30, 2022
股票量化

StockQuant Gary-Hertel 请勿提交issue!可以加入交流群与其他朋友一起自学交流,加微信mzjimmy 一、配置文件的设置 启动框架需要先导入必要的模块,并且载入一次配置文件! 配置文件是一个json格式的文件config.json,在docs文件夹中有模板

218 Dec 25, 2022
Retrieves GitHub Stats via `git_api` and flask.

GitHub User Search Created using Python3 and git_api, coded by JBYT27. About This is a project I decided to make for Kajam, but I decided to choose a

an aspirin 4 May 11, 2022
Python wrapper library for World Weather Online API

pywwo Python wrapper library for World Weather Online API using lxml.objectify How to use from pywwo import * setKey('your_key', 'free') w=LocalWeat

World Weather Online 20 Dec 19, 2022
A powerfull SMS Bomber for Bangladesh . NO limite .Unlimited SMS Spaming

RedBomberBD A powerfull SMS Bomber for Bangladesh . NO limite .Unlimited SMS Spaming Installation Install my-tool on termux by using thoes commands pk

Abdullah Al Redwan 3 Feb 16, 2022
Telegram-Voice Recoginiton Project (Python)

Telegram-Voice Recoginiton Project (Python) It is a telegram bot that analyses voice messages and convert it to text and reply back response on bot's

Krishnadev P Melevila 1 Jan 28, 2022
Manage Proxmox KVM Virtual Machines via Slack bot.

proxmox-slack-bot Create KVM Virtual Machines on Proxmox, the easy way. Not much works works here yet... Setup dev environment Setup fully editable st

Plenus Pyramis 3 Mar 20, 2022
Example-bot-discord - Example bot discord xD

example-python-bot-discord Clone this repository Grab a token on Discord's devel

Amitminer 1 Mar 14, 2022
A pypi package that helps in generating discord bots.

A pypi package that helps in generating discord bots.

KlevrHQ 3 Nov 17, 2021
A module to complement discord.py that has Music, Paginator and Levelling.

discord-super-utils A modern python module including many useful features that make discord bot programming extremely easy. Features Modern leveling m

Yash 106 Dec 19, 2022
Eva Maria Telegram Bot

Eva Maria Bot Features Auto Filter Manuel Filter IMDB Admin Commands Broadcast Index IMDB search Inline Search Random pics ids and User info Stats, Us

Eva Maria TG 477 Dec 31, 2022
🐲 Powerfull Discord Token Stealer made in python

🐲 Follow me here 🐲 Discord | YouTube | Github ☕ Usage 💻 Downloading git clone https://github.com/KanekiWeb/Powerfull-Token-Stealer

Kaneki 61 Dec 19, 2022
1.本项目采用Python Flask框架开发提供(应用管理,实例管理,Ansible管理,LDAP管理等相关功能)

op-devops-api 1.本项目采用Python Flask框架开发提供(应用管理,实例管理,Ansible管理,LDAP管理等相关功能) 后端项目配套前端项目为:op-devops-ui jenkinsManager 一.插件python-jenkins bug修复 (1).插件版本 pyt

3 Nov 12, 2021
Periodically check the manuscript state in the scholar one system and send email when finding a new state.

ScholarOne-manuscript-checker Periodically check the manuscript state in the scholar one system and send email when finding a new state. Parameters ne

2 Aug 18, 2022