Wannier & vASP Postprocessing module

Overview

WASPP module

Wannier90 & vASP Postprocessing module with functionalities I needed during my PhD.

Being updated Version: 0.5

Main functions:

Wannier90 - VASP interface preparation and evaluation.

  1. plot_pdos

For plotting pDOS select LORBIT = 11 in INCAR file

Main function for plotting the partial density of states, for desired atoms and orbitals at all the different Wyckoff positions. Usage is straightforward:

  • file = "vasprun.xml" of your VASP run.
  • _atoms = Atoms whose pDOS you wanna plot as a list of strings e.g. ["P","I","O","Rn","Al"].
  • _orbitals = Orbitals whose pDOS you wanna know from _atoms as a list of strings. They can be "big" orbitals (s,p,d,f) or "small" (px,py,pz,dxy,...), e.g ["s","px","d"].
  • e_window = Range of energies of interest.

If _atoms and _orbitals are None, the function will plot every atom and big orbital at every different Wyckoff position. For a better visualization each kind of big orbital is displayed with a different linestyle.

For example (Ta6Se24I2):

wap.plot_dos("vasprun.xml",e_window = (-7.5,4))

Returns:

TaSeI pDOS

The first tag in the legend is the atom, the second is the Wyckoff position and the third the orbital.

  1. band_counter

Counts the numebr of bands in a energy window in the whole FBZ. It gives a good clue of how to choose the energy window. Usage is as following:

wap.band_counter(file = "vasprun.xml", emin = 0.0, emax = 0.0)
  • file = "vasprun.xml" of your VASP run.
  • emin and emax are the lower and upper part of the energy window given in reference to Fermi energy.

For example:

wap.band_counter(file = "vasprun.xml", emin = -7.0, emax = 4.0)

Returns:

Efermi = 3.01610496.
Total bands = 544.
The number of bands between -7.00 eV (-3.98 eV) and 4.00 eV (7.02 eV) is 368.

Which is, the Fermi energy in eV, the total number of bands of the vasp run and the number of bands in the energy window (with real energies in parenthesis for wannier90.win)

  1. plot_wannierbands

Function for plotting wannier bands from .dat and .gnu files.

Usage:

wap.plot_wannierbands(file_dat = "wannier90_band.dat", gnu = "wannier90_band.gnu",efermi = 0.0, e_window = None, fig_size = (15,8),savename = "wannierbands.png")
  • file_dat: *_band.dat output file from a wannier90.x run.
  • file_dat: *_band.gnu output file from a wannier90.x run.
  • efermi: Fermi energy.
  • e_window = Energy window for the plot

It generates a "wannierbands.png" file.

4 . plot_vaspbands

Function for plotting VASP bands from a non self-consistent calculation in a KPATH. Usage:

wap.plot_vaspbands(outcar = "OUTCAR", kpoints = "KPOINTS")

  • outcar: OUTCAR file from VASP run.
  • kpoints: KPOINTS file from nsc VASP run (linemode expected).
  1. plot_comparison

Function for comparing VASP and Wannier90 bandstructures combining the previous functions and tags. Usage:

wap.plot_comparison(outcar = "OUTCAR", kpoints = "KPOINTS",file_dat = "wannier90_band.dat", gnu = "wannier90_band.gnu",efermi = 0.0, fig_size = (12,8), e_window = (-4,4),savename = "comparison.png"):
  • outcar: OUTCAR file from VASP run.
  • kpoints: KPOINTS file from nsc VASP run (linemode expected).
  • file_dat: *_band.dat output file from a wannier90.x run.
  • file_dat: *_band.gnu output file from a wannier90.x run.
  • efermi: Fermi energy.
  • e_window = Energy window for the plot

Example: RhSi

wap.plot_comparison(outcar = "OUTCAR", kpoints = "KPOINTS",file_dat = "wannier90_band.dat", gnu = "plottt/wannier90_band.gnu",efermi = 0.0, fig_size = (12,8), e_window = (-4,4),savename = "comparison.png") 

RhSi VASP vs Wannier90

  1. wann_kpoints

Function for generating kpath string for seedname.win using a KPOINT file from a nsc VASP calculation. Usage is as follows:

wann_kpoints(file = "KPOINTS")

Where KPOINTS is like:

Cubic
20   ! 20 grids
Line-mode
reciprocal
   0.000   0.000   0.000   ! GAMMA
   0.000   0.500   0.000   ! X
   0.000   0.500   0.000   ! X
   0.500   0.500   0.000   ! M
   0.500   0.500   0.000   ! M
   0.000   0.000   0.000   ! GAMMA
   0.000   0.000   0.000   ! GAMMA
   0.500   0.500   0.500   ! R
   0.500   0.500   0.500   ! R
   0.000   0.500   0.000   ! X
   0.500   0.500   0.000   ! M
   0.500   0.500   0.500   ! R

And it generates a WKPTS.txt file as:

G 0.000 0.000 0.000 X 0.000 0.500 0.000 
X 0.000 0.500 0.000 M 0.500 0.500 0.000 
M 0.500 0.500 0.000 G 0.000 0.000 0.000 
G 0.000 0.000 0.000 R 0.500 0.500 0.500 
R 0.500 0.500 0.500 X 0.000 0.500 0.000 
M 0.500 0.500 0.000 R 0.500 0.500 0.500 
  1. plot_custom_vaspbands

Similar to plot_vaspbands but more customizable. Usage is as follows:

wap.plot_custom_vaspbands(outcar = "OUTCAR",kpoints = "KPOINTS",
                          figsize = (10,7.5),ewindow = (-3,3),
                          dpi = 500,linewidth = 0.5,
                          kp_i=None,kp_f=None,
                          title=None,fname=None)

Where:

  • kp_i & kp_f is the number of the fist and last KPOINT in the path that you want to plot. E.g. in the KPOINTS file from above example kp_i = 2 would correspond to M.
  • title and fname are the title to be printed in the figure and the path to the figure when saved.

MBJ and PBE potentials bandstructure comparison.

compare_MBJ

Function for comparing PBE nscc and MBJ scc functional bandstructures using pymatgen treatment of vasprun.

wap.compare_MBJ(vasprun_pbe = "vasprun1.xml",
            vasprun_mbj = "vasprun2.xml",
            kpoint_file = "KPOINTS",
            e_window = (-4,4),
            fig_title = None,
            fig_name = "comparison.png")

Usage:

  • vasprun_pbe: vasprun file for PBE nsc run.
  • vasprun_mbj: vasprun file for MBJ scc run.
  • kpoint_file: kpoint file for nsc (linemode expected).

For example:

wap.compare(vasprun_pbe = "vasprun81_rel.xml",
            vasprun_mbj = "vasprun81.xml",
            kpoint_file = "KPOINTS",
            e_window = (-2,2),
            fig_title = "SG81",
            fig_name = "comparison81.png")

Returns:

VASP PBE vs MBJ potetntial

More functionalities are present in the code and many more are coming, stay tuned & take a look at WASPP05.py. (^³^)~♪

Package Requeriments:

  • numpy
  • matplotlib
  • scipy
  • itertools
  • re
  • pymatgen
Owner
Irián Sánchez Ramírez
PhD student @ DIPC
Irián Sánchez Ramírez
Project Interface For nextcord-ext

Project Interface For nextcord-ext

nextcord-ext 1 Nov 13, 2021
Structured Exceptions for Python

XC: Structured exceptions for Python XC encourages a structured, disciplined approach to use of exceptions: it reduces the overhead of declaring excep

Bob Gautier 2 May 28, 2021
🍬️🦇️ Open source Trick or Treat! 🦇️🍬️

Open Source Halloween! What's an easy way to have fun, and celebrate an open source Halloween? Open source trick or treating, of course! The repositor

Research Software Engineers 3 Oct 18, 2021
Blender Light Manipulation - A script that makes it easier to work with light

Blender Light Manipulation A script that makes it easier to work with light 1. Wstęp W poniższej dokumentacji przedstawiony zostanie skrypt, który swo

Tomasz 1 Oct 19, 2021
30DaysOfCode-PhoenixClub - Solution of everyday coding problem given in 30DaysofCode contest held on Hackerrank

30DaysOfCode-PhoenixClub 👨‍💻 Every day problems solution given in 30DaysOfCode

Urveshkumar 8 Jan 30, 2022
This Program Automates The Procces Of Adding Camos On Guns And Saving Them On Modern Warfare Guns

This Program Automates The Procces Of Adding Camos On Guns And Saving Them On Modern Warfare Guns

Flex Tools 6 May 26, 2022
Audio-analytics for music-producers! Automate tedious tasks such as musical scale detection, BPM rate classification and audio file conversion.

Click here to be re-directed to the Beat Inspect Streamlit Web-App You are a music producer? Let's get in touch via LinkedIn Fundamental Analytics for

Stefan Rummer 11 Dec 27, 2022
A Python package to request and process seismic waveform data from Hi-net.

HinetPy is a Python package to simplify tedious data request, download and format conversion tasks related to NIED Hi-net. NIED Hi-net | Source Code |

Dongdong Tian 65 Dec 09, 2022
Chess bot can play automatically as white or black on lichess.com, chess.com and any website using drag and drop to move pieces

Chessbot "Why create another chessbot ?" The explanation is simple : I did not find a free bot I liked online : all the bots I saw on internet are par

Dhimas Bagus Prayoga 2 Nov 11, 2021
Double Pendulum implementation in Python, now with added pendulums and trails :D

Double Pendulum Using Curses in Python. A nice relaxing double pendulum simulation using ASCII, able to simulate multiple pendulums at once, and provi

Nekurone 62 Dec 14, 2022
Sublime Text 2/3 style auto completion for ST4

Hippie Autocompletion Sublime Text 2/3 style auto completion for ST4: cycle through words, do not show popup. Simply hit Tab to insert completion, hit

Alexander Schepanovski 20 May 19, 2022
PyDateWaiter helps waiting special day & calculating remain days till that day with Python code.

PyDateWaiter (v.Beta) PyDateWaiter helps waiting special day(aniversary) & calculating remain days till that day with Python code. Made by wallga gith

wallga 1 Jan 14, 2022
(Pre-)compromise operations for MITRE CALDERA

(Pre-)compromise operations for CALDERA Extend your CALDERA operations over the entire adversary killchain. In contrast to MITRE's access plugin, cald

Diederik Bakker 3 Aug 22, 2022
Age of Empires II recorded game parsing and summarization in Python 3.

mgz Age of Empires II recorded game parsing and summarization in Python 3. Supported Versions Age of Kings (.mgl) The Conquerors (.mgx) Userpatch 1.4

148 Dec 11, 2022
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Jan 05, 2023
This is the old code for bitcoin risk metric, the whole purpose form it is to help you DCA your investment according to bitcoin risk.

About The Project This is the old code for bitcoin risk metric, the whole purpose form it is to help you DCA your investment according to bitcoin risk

BitcoinRaven 2 Aug 03, 2022
Estimating the potential photovoltaic production of buildings (in Berlin)

The following people contributed equally to this repository (in alphabetical order): Daniel Bumke JJX Corstiaen Versteegh This repository is forked on

Daniel Bumke 6 Feb 18, 2022
HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones.

FZJ-IEK3 17 Dec 17, 2022
Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

The Deep Learning Book - Goodfellow, I., Bengio, Y., and Courville, A. (2016) This content is part of a series following the chapter 2 on linear algeb

hadrienj 1.7k Jan 07, 2023
Bitflip Fault Simulation Platform by Daniele Rizzieri (2021)

BFSP [v1.05] Bitflip Fault Simulation Platform by Daniele Rizzieri (2021) The platform injects a random bitflip in each of N copies of a binary file.

Daniele Rizzieri 2 Nov 05, 2022