Async and Sync wrapper client around httpx, fastapi, date stuff

Overview

lazyapi

Async and Sync wrapper client around httpx, fastapi, and datetime stuff.


Motivation

This library is forked from an internal project that works with a lot of backend APIs, namely interacting with kubernetes's API. In certain cases, you want to use sync where async isnt suitable, but managing two seperate sync / async client can be annoying, especially when you aren't initializing from async at the start.

This project aims to solve a few problems:

  • Enables both sync and async REST calls from the same client.

  • Improves upon serialization/deserialization over standard json library by using simdjson.

  • Enables dynamic dataclass creation from responses via lazycls that are based on pydantic BaseModel.

  • Work with Timestamp / Datetime much quicker and simpler.

  • Manipulate response objects as efficiently as possible.

  • Wrapper functions for fastapi to enable quick api creation.


Quickstart

pip install --upgrade lazyapi
HttpResponse(resp= , clientType='sync', method='get', timestamp=datetime.datetime(2021, 12, 1, 7, 55, 10, 478544, tzinfo=datetime.timezone.utc)) class HttpResponse(BaseCls): resp: Response clientType: str = 'sync' method: str = 'get' timestamp: str = Field(default_factory=get_timestamp_utc) DefaultHeaders = { 'Accept': 'application/json', 'Content-Type': 'application/json' } --- Client Configs from Env Variables class HttpCfg: timeout = envToFloat('HTTPX_TIMEOUT', 30.0) keep_alive = envToInt('HTTPX_KEEPALIVE', 50) max_connect = envToInt('HTTPX_MAXCONNECT', 200) headers = envToDict('HTTPX_HEADERS', default=DefaultHeaders) class AsyncHttpCfg: timeout = envToFloat('HTTPX_ASYNC_TIMEOUT', 30.0) keep_alive = envToInt('HTTPX_ASYNC_KEEPALIVE', 50) max_connect = envToInt('HTTPX_ASYNC_MAXCONNECT', 200) headers = envToDict('HTTPX_ASYNC_HEADERS', default=DefaultHeaders) """ ">
from lazyapi import APIClient

# Allows initialization of the client from sync call. 
# The client has both async and sync call methods.
apiclient = APIClient(
    base_url = 'https://google.com',
    headers = {},
    module_name = 'customlib',
)

# All requests will be routed through the base_url
# Sync Method
resp = apiclient.get(path='/search?...', **kwargs)

# Async Method
resp = await apiclient.async_get(path='/search?...', **kwargs)

"""
Both yield the same results, only differing in the clientType = sync | async
The underlying classes are auto-generated from Pydantic BaseModels, so anything you can do with Pydantic Models, you can do with these.

> HttpResponse(resp=
    
     , clientType='sync', method='get', timestamp=datetime.datetime(2021, 12, 1, 7, 55, 10, 478544, tzinfo=datetime.timezone.utc))
    

class HttpResponse(BaseCls):
    resp: Response
    clientType: str = 'sync'
    method: str = 'get'
    timestamp: str = Field(default_factory=get_timestamp_utc)

DefaultHeaders = {
    'Accept': 'application/json',
    'Content-Type': 'application/json'
}

---
Client Configs from Env Variables

class HttpCfg:
    timeout = envToFloat('HTTPX_TIMEOUT', 30.0)
    keep_alive = envToInt('HTTPX_KEEPALIVE', 50)
    max_connect = envToInt('HTTPX_MAXCONNECT', 200)
    headers = envToDict('HTTPX_HEADERS', default=DefaultHeaders)

class AsyncHttpCfg:
    timeout = envToFloat('HTTPX_ASYNC_TIMEOUT', 30.0)
    keep_alive = envToInt('HTTPX_ASYNC_KEEPALIVE', 50)
    max_connect = envToInt('HTTPX_ASYNC_MAXCONNECT', 200)
    headers = envToDict('HTTPX_ASYNC_HEADERS', default=DefaultHeaders)

"""

API Specific Features

API Responses

Responses returned from APIClient are of lazyapi.classes.HttpResponse classes which wraps httpx.response in a BaseModel to do response validation, and interfacing with the response such as:

  • .is_error -> bool

  • .is_redirect -> bool

  • .data -> resp.json()

  • .data_obj -> SimdJson.Object / SimdJson.Array

  • .data_cls -> lazycls.LazyCls

  • .timestamp -> str with utc timestamp of request

Time/Datetime Functions

lazyapi.timez: Includes a multitude of datetime based functions to work with timestamp / time / duration.

  • TIMEZONE_DESIRED env to set the desired Timezone Default: America/Chicago

  • TIMEZONE_FORMAT env to set the desired Timezone parse. Default: %Y-%m-%dT%H:%M:%SZ

  • TimezCfg class can be modified based on above two variables.

  • get_timestamp: creates a str based timestamp using local TZ

  • get_timestamp_tz: creates a str based timestamp using the desired TZ

  • get_timestamp_utc: creates a str based timestamp using UTC

  • timer: Simple timer function

  • dtime: Get a datetime object. If no datetime obj is given, returns datetime.now(), otherwise will get the difference

  • get_dtime_secs: converts a datetime object to total num secs.

  • get_dtime_str: Converts a datetime object to a string. If no datetime obj is given, returns datetime.now() converted into desired str format

  • get_dtime_iso: attempts to standardize a datetime obj from existing tz into an iso/desired-formatted datetime

  • dtime_parse: attempts to parse a string, timestamp, etc. into a datetime obj

  • dtime_diff: gets the difference between two datetime objects.

FastAPI wrapper functions

Primarily used to create subapp mounts behind the primary fastapi app.

PlainTextResponse: return PlainTextResponse(content='ok') app.mount('/subapp', subapp) if __name__ == '__main__': import uvicorn uvicorn.run("main:app") """ Now you can expect the route at /subapp/healthz """ ">
from lazyapi import create_fastapi, FastAPICfg

"""
class FastAPICfg:
    app_title = envToStr('FASTAPI_TITLE', 'LazyAPI')
    app_desc = envToStr('FASTAPI_DESC', 'Just a LazyAPI Backend')
    app_version = envToStr('FASTAPI_VERSION', 'v0.0.1')
    include_middleware = envToBool('FASTAPI_MIDDLEWARE', 'true')
    allow_origins = envToList('FASTAPI_ALLOW_ORIGINS', default=["*"])
    allow_methods = envToList('FASTAPI_ALLOW_METHODS', default=["*"])
    allow_headers = envToList('FASTAPI_ALLOW_HEADERS', default=["*"])
    allow_credentials = envToBool('FASTAPI_ALLOW_CREDENTIALS', 'true')

"""
app = create_fastapiapp_name: str, title: str = None, desc: str = None, version: str = None)
subapp = create_fastapi(app_name: 'subapp')

@subapp.get('/healthz')
async def healthcheck() -> PlainTextResponse:
    return PlainTextResponse(content='ok')


app.mount('/subapp', subapp)

if __name__ == '__main__':
    import uvicorn
    uvicorn.run("main:app")

"""
Now you can expect the route at
/subapp/healthz


"""
You might also like...
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

 Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje

REST API with FastAPI and SQLite3.
REST API with FastAPI and SQLite3.

REST API with FastAPI and SQLite3

Example of using FastAPI and MongoDB database.

FastAPI Todo Application Example of using FastAPI and MangoDB database. 💡 Prerequisites Python ⚙️ Build & Run The first thing to do is to clone the r

Basic FastAPI starter with GraphQL, Docker, and MongoDB configurations.

FastAPI + GraphQL Starter A python starter project using FastAPI and GraphQL. This project leverages docker for containerization and provides the scri

FastAPI Learning Example,对应中文视频学习教程:https://space.bilibili.com/396891097

视频教学地址 中文学习教程 1、本教程每一个案例都可以独立跑,前提是安装好依赖包。 2、本教程并未按照官方教程顺序,而是按照实际使用顺序编排。 Video Teaching Address FastAPI Learning Example 1.Each case in this tutorial c

🤪 FastAPI + Vue构建的Mall项目后台管理

Mall项目后台管理 前段时间学习Vue写了一个移动端项目 https://www.charmcode.cn/app/mall/home 然后教程到此就结束了, 我就总感觉少点什么,计划自己着手写一套后台管理。 相关项目 移动端Mall项目源码(Vue构建): https://github.com/

FastAPI on Google Cloud Run

cloudrun-fastapi Boilerplate for running FastAPI on Google Cloud Run with Google Cloud Build for deployment. For all documentation visit the docs fold

FastAPI + Django experiment

django-fastapi-example This is an experiment to demonstrate one potential way of running FastAPI with Django. It won't be actively maintained. If you'

Releases(v0.0.2)
Owner
Chief Architect @ Growth Engine
ASGI middleware for authentication, rate limiting, and building CRUD endpoints.

Piccolo API Utilities for easily exposing Piccolo models as REST endpoints in ASGI apps, such as Starlette and FastAPI. Includes a bunch of useful ASG

81 Dec 09, 2022
volunteer-database

This is the official CSM (Crowd source medical) database The What Now? We created this in light of the COVID-19 pandemic to allow volunteers to work t

32 Jun 21, 2022
[rewrite 중] 코로나바이러스감염증-19(COVID-19)의 국내/국외 발생 동향 조회 API | Coronavirus Infectious Disease-19 (COVID-19) outbreak trend inquiry API

COVID-19API 코로나 바이러스 감염증-19(COVID-19, SARS-CoV-2)의 국내/외 발생 동향 조회 API Corona Virus Infectious Disease-19 (COVID-19, SARS-CoV-2) outbreak trend inquiry

Euiseo Cha 28 Oct 29, 2022
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 565 Jan 02, 2023
A Nepali Dictionary API made using FastAPI.

Nepali Dictionary API A Nepali dictionary api created using Fast API and inspired from https://github.com/nirooj56/Nepdict. You can say this is just t

Nishant Sapkota 4 Mar 18, 2022
An image validator using FastAPI.

fast_api_image_validator An image validator using FastAPI.

Kevin Zehnder 7 Jan 06, 2022
Example of integrating Poetry with Docker leveraging multi-stage builds.

Poetry managed Python FastAPI application with Docker multi-stage builds This repo serves as a minimal reference on setting up docker multi-stage buil

Michael Oliver 266 Dec 27, 2022
python template private service

Template for private python service This is a cookiecutter template for an internal REST API service, written in Python, inspired by layout-golang. Th

UrvanovCompany 15 Oct 02, 2022
python fastapi example connection to mysql

Quickstart Then run the following commands to bootstrap your environment with poetry: git clone https://github.com/xiaozl/fastapi-realworld-example-ap

55 Dec 15, 2022
Monitor Python applications using Spring Boot Admin

Pyctuator Monitor Python web apps using Spring Boot Admin. Pyctuator supports Flask, FastAPI, aiohttp and Tornado. Django support is planned as well.

SolarEdge Technologies 145 Dec 28, 2022
Example projects built using Piccolo.

Piccolo examples Here are some example Piccolo projects. Tutorials headless blog fastapi Build a documented API with an admin in minutes! Live project

15 Nov 23, 2022
MLServer

MLServer An open source inference server to serve your machine learning models. ⚠️ This is a Work in Progress. Overview MLServer aims to provide an ea

Seldon 341 Jan 03, 2023
A minimalistic example of preparing a model for (synchronous) inference in production.

A minimalistic example of preparing a model for (synchronous) inference in production.

Anton Lozhkov 6 Nov 29, 2021
FastAPI Skeleton App to serve machine learning models production-ready.

FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre

268 Jan 01, 2023
TODO aplication made with Python's FastAPI framework and Hexagonal Architecture

FastAPI Todolist Description Todolist aplication made with Python's FastAPI framework and Hexagonal Architecture. This is a test repository for the pu

Giovanni Armane 91 Dec 31, 2022
Lung Segmentation with fastapi

Lung Segmentation with fastapi This app uses FastAPI as backend. Usage for app.py First install required libraries by running: pip install -r requirem

Pejman Samadi 0 Sep 20, 2022
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://frankie567.github.io/fastapi-users/ Source Code: https

François Voron 2.4k Jan 01, 2023
Money Transaction is a system based on the recent famous FastAPI.

moneyTransfer Overview Money Transaction is a system based on the recent famous FastAPI. techniques selection System's technique selection is as follo

2 Apr 28, 2021
FastAPI + Django experiment

django-fastapi-example This is an experiment to demonstrate one potential way of running FastAPI with Django. It won't be actively maintained. If you'

Jordan Eremieff 78 Jan 03, 2023
Piccolo Admin provides a simple yet powerful admin interface on top of Piccolo tables

Piccolo Admin Piccolo Admin provides a simple yet powerful admin interface on top of Piccolo tables - allowing you to easily add / edit / filter your

188 Jan 09, 2023