Async and Sync wrapper client around httpx, fastapi, date stuff

Overview

lazyapi

Async and Sync wrapper client around httpx, fastapi, and datetime stuff.


Motivation

This library is forked from an internal project that works with a lot of backend APIs, namely interacting with kubernetes's API. In certain cases, you want to use sync where async isnt suitable, but managing two seperate sync / async client can be annoying, especially when you aren't initializing from async at the start.

This project aims to solve a few problems:

  • Enables both sync and async REST calls from the same client.

  • Improves upon serialization/deserialization over standard json library by using simdjson.

  • Enables dynamic dataclass creation from responses via lazycls that are based on pydantic BaseModel.

  • Work with Timestamp / Datetime much quicker and simpler.

  • Manipulate response objects as efficiently as possible.

  • Wrapper functions for fastapi to enable quick api creation.


Quickstart

pip install --upgrade lazyapi
HttpResponse(resp= , clientType='sync', method='get', timestamp=datetime.datetime(2021, 12, 1, 7, 55, 10, 478544, tzinfo=datetime.timezone.utc)) class HttpResponse(BaseCls): resp: Response clientType: str = 'sync' method: str = 'get' timestamp: str = Field(default_factory=get_timestamp_utc) DefaultHeaders = { 'Accept': 'application/json', 'Content-Type': 'application/json' } --- Client Configs from Env Variables class HttpCfg: timeout = envToFloat('HTTPX_TIMEOUT', 30.0) keep_alive = envToInt('HTTPX_KEEPALIVE', 50) max_connect = envToInt('HTTPX_MAXCONNECT', 200) headers = envToDict('HTTPX_HEADERS', default=DefaultHeaders) class AsyncHttpCfg: timeout = envToFloat('HTTPX_ASYNC_TIMEOUT', 30.0) keep_alive = envToInt('HTTPX_ASYNC_KEEPALIVE', 50) max_connect = envToInt('HTTPX_ASYNC_MAXCONNECT', 200) headers = envToDict('HTTPX_ASYNC_HEADERS', default=DefaultHeaders) """ ">
from lazyapi import APIClient

# Allows initialization of the client from sync call. 
# The client has both async and sync call methods.
apiclient = APIClient(
    base_url = 'https://google.com',
    headers = {},
    module_name = 'customlib',
)

# All requests will be routed through the base_url
# Sync Method
resp = apiclient.get(path='/search?...', **kwargs)

# Async Method
resp = await apiclient.async_get(path='/search?...', **kwargs)

"""
Both yield the same results, only differing in the clientType = sync | async
The underlying classes are auto-generated from Pydantic BaseModels, so anything you can do with Pydantic Models, you can do with these.

> HttpResponse(resp=
    
     , clientType='sync', method='get', timestamp=datetime.datetime(2021, 12, 1, 7, 55, 10, 478544, tzinfo=datetime.timezone.utc))
    

class HttpResponse(BaseCls):
    resp: Response
    clientType: str = 'sync'
    method: str = 'get'
    timestamp: str = Field(default_factory=get_timestamp_utc)

DefaultHeaders = {
    'Accept': 'application/json',
    'Content-Type': 'application/json'
}

---
Client Configs from Env Variables

class HttpCfg:
    timeout = envToFloat('HTTPX_TIMEOUT', 30.0)
    keep_alive = envToInt('HTTPX_KEEPALIVE', 50)
    max_connect = envToInt('HTTPX_MAXCONNECT', 200)
    headers = envToDict('HTTPX_HEADERS', default=DefaultHeaders)

class AsyncHttpCfg:
    timeout = envToFloat('HTTPX_ASYNC_TIMEOUT', 30.0)
    keep_alive = envToInt('HTTPX_ASYNC_KEEPALIVE', 50)
    max_connect = envToInt('HTTPX_ASYNC_MAXCONNECT', 200)
    headers = envToDict('HTTPX_ASYNC_HEADERS', default=DefaultHeaders)

"""

API Specific Features

API Responses

Responses returned from APIClient are of lazyapi.classes.HttpResponse classes which wraps httpx.response in a BaseModel to do response validation, and interfacing with the response such as:

  • .is_error -> bool

  • .is_redirect -> bool

  • .data -> resp.json()

  • .data_obj -> SimdJson.Object / SimdJson.Array

  • .data_cls -> lazycls.LazyCls

  • .timestamp -> str with utc timestamp of request

Time/Datetime Functions

lazyapi.timez: Includes a multitude of datetime based functions to work with timestamp / time / duration.

  • TIMEZONE_DESIRED env to set the desired Timezone Default: America/Chicago

  • TIMEZONE_FORMAT env to set the desired Timezone parse. Default: %Y-%m-%dT%H:%M:%SZ

  • TimezCfg class can be modified based on above two variables.

  • get_timestamp: creates a str based timestamp using local TZ

  • get_timestamp_tz: creates a str based timestamp using the desired TZ

  • get_timestamp_utc: creates a str based timestamp using UTC

  • timer: Simple timer function

  • dtime: Get a datetime object. If no datetime obj is given, returns datetime.now(), otherwise will get the difference

  • get_dtime_secs: converts a datetime object to total num secs.

  • get_dtime_str: Converts a datetime object to a string. If no datetime obj is given, returns datetime.now() converted into desired str format

  • get_dtime_iso: attempts to standardize a datetime obj from existing tz into an iso/desired-formatted datetime

  • dtime_parse: attempts to parse a string, timestamp, etc. into a datetime obj

  • dtime_diff: gets the difference between two datetime objects.

FastAPI wrapper functions

Primarily used to create subapp mounts behind the primary fastapi app.

PlainTextResponse: return PlainTextResponse(content='ok') app.mount('/subapp', subapp) if __name__ == '__main__': import uvicorn uvicorn.run("main:app") """ Now you can expect the route at /subapp/healthz """ ">
from lazyapi import create_fastapi, FastAPICfg

"""
class FastAPICfg:
    app_title = envToStr('FASTAPI_TITLE', 'LazyAPI')
    app_desc = envToStr('FASTAPI_DESC', 'Just a LazyAPI Backend')
    app_version = envToStr('FASTAPI_VERSION', 'v0.0.1')
    include_middleware = envToBool('FASTAPI_MIDDLEWARE', 'true')
    allow_origins = envToList('FASTAPI_ALLOW_ORIGINS', default=["*"])
    allow_methods = envToList('FASTAPI_ALLOW_METHODS', default=["*"])
    allow_headers = envToList('FASTAPI_ALLOW_HEADERS', default=["*"])
    allow_credentials = envToBool('FASTAPI_ALLOW_CREDENTIALS', 'true')

"""
app = create_fastapiapp_name: str, title: str = None, desc: str = None, version: str = None)
subapp = create_fastapi(app_name: 'subapp')

@subapp.get('/healthz')
async def healthcheck() -> PlainTextResponse:
    return PlainTextResponse(content='ok')


app.mount('/subapp', subapp)

if __name__ == '__main__':
    import uvicorn
    uvicorn.run("main:app")

"""
Now you can expect the route at
/subapp/healthz


"""
You might also like...
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

 Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje

REST API with FastAPI and SQLite3.
REST API with FastAPI and SQLite3.

REST API with FastAPI and SQLite3

Example of using FastAPI and MongoDB database.

FastAPI Todo Application Example of using FastAPI and MangoDB database. 💡 Prerequisites Python ⚙️ Build & Run The first thing to do is to clone the r

Basic FastAPI starter with GraphQL, Docker, and MongoDB configurations.

FastAPI + GraphQL Starter A python starter project using FastAPI and GraphQL. This project leverages docker for containerization and provides the scri

FastAPI Learning Example,对应中文视频学习教程:https://space.bilibili.com/396891097

视频教学地址 中文学习教程 1、本教程每一个案例都可以独立跑,前提是安装好依赖包。 2、本教程并未按照官方教程顺序,而是按照实际使用顺序编排。 Video Teaching Address FastAPI Learning Example 1.Each case in this tutorial c

🤪 FastAPI + Vue构建的Mall项目后台管理

Mall项目后台管理 前段时间学习Vue写了一个移动端项目 https://www.charmcode.cn/app/mall/home 然后教程到此就结束了, 我就总感觉少点什么,计划自己着手写一套后台管理。 相关项目 移动端Mall项目源码(Vue构建): https://github.com/

FastAPI on Google Cloud Run

cloudrun-fastapi Boilerplate for running FastAPI on Google Cloud Run with Google Cloud Build for deployment. For all documentation visit the docs fold

FastAPI + Django experiment

django-fastapi-example This is an experiment to demonstrate one potential way of running FastAPI with Django. It won't be actively maintained. If you'

Releases(v0.0.2)
Owner
Chief Architect @ Growth Engine
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://frankie567.github.io/fastapi-users/ Source Code: https

François Voron 2.4k Jan 01, 2023
This project is a realworld backend based on fastapi+mongodb

This project is a realworld backend based on fastapi+mongodb. It can be used as a sample backend or a sample fastapi project with mongodb.

邱承 381 Dec 29, 2022
Generate FastAPI projects for high performance applications

Generate FastAPI projects for high performance applications. Based on MVC architectural pattern, WSGI + ASGI. Includes tests, pipeline, base utilities, Helm chart, and script for bootstrapping local

Radosław Szamszur 274 Jan 08, 2023
[rewrite 중] 코로나바이러스감염증-19(COVID-19)의 국내/국외 발생 동향 조회 API | Coronavirus Infectious Disease-19 (COVID-19) outbreak trend inquiry API

COVID-19API 코로나 바이러스 감염증-19(COVID-19, SARS-CoV-2)의 국내/외 발생 동향 조회 API Corona Virus Infectious Disease-19 (COVID-19, SARS-CoV-2) outbreak trend inquiry

Euiseo Cha 28 Oct 29, 2022
Install multiple versions of r2 and its plugins via Pip on any system!

r2env This repository contains the tool available via pip to install and manage multiple versions of radare2 and its plugins. r2-tools doesn't conflic

radare org 18 Oct 11, 2022
A Python pickling decompiler and static analyzer

Fickling Fickling is a decompiler, static analyzer, and bytecode rewriter for Python pickle object serializations. Pickled Python objects are in fact

Trail of Bits 162 Dec 13, 2022
First API using FastApi

First API using FastApi Made this Simple Api to store and Retrive Student Data of My College Ncc-Bim To View All the endpoits Visit /docs To Run Local

Sameer Joshi 2 Jun 21, 2022
Fastapi practice project

todo-list-fastapi practice project How to run Install dependencies npm, yarn: standard-version, husky make: script for lint, test pipenv: virtualenv +

Deo Kim 10 Nov 30, 2022
EML analyzer is an application to analyze the EML file

EML analyzer EML analyzer is an application to analyze the EML file which can: Analyze headers. Analyze bodies. Extract IOCs (URLs, domains, IP addres

Manabu Niseki 162 Dec 28, 2022
A complete end-to-end machine learning portal that covers processes starting from model training to the model predicting results using FastAPI.

Machine Learning Portal Goal Application Workflow Process Design Live Project Goal A complete end-to-end machine learning portal that covers processes

Shreyas K 39 Nov 24, 2022
REST API with FastAPI and SQLite3.

REST API with FastAPI and SQLite3

Luis Quiñones Requelme 2 Mar 14, 2022
I'm curious if pydantic + fast api can be sensibly used with DDD + hex arch methodology

pydantic-ddd-exploration I'm curious if pydantic + fast api can be sensibly used with DDD + hex arch methodology Prerequisites nix direnv (nix-env -i

Olgierd Kasprowicz 2 Nov 17, 2021
Twitter API with fastAPI

Twitter API with fastAPI Content Forms Cookies and headers management Files edition Status codes HTTPExceptions Docstrings or documentation Deprecate

Juan Agustin Di Pasquo 1 Dec 21, 2021
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.

Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent

Neuralet 129 Dec 12, 2022
ASGI middleware for authentication, rate limiting, and building CRUD endpoints.

Piccolo API Utilities for easily exposing Piccolo models as REST endpoints in ASGI apps, such as Starlette and FastAPI. Includes a bunch of useful ASG

81 Dec 09, 2022
api versioning for fastapi web applications

fastapi-versioning api versioning for fastapi web applications Installation pip install fastapi-versioning Examples from fastapi import FastAPI from f

Dean Way 472 Jan 02, 2023
Backend logic implementation for realworld with awesome FastAPI

Backend logic implementation for realworld with awesome FastAPI

Nik 2.2k Jan 08, 2023
Python supercharged for the fastai library

Welcome to fastcore Python goodies to make your coding faster, easier, and more maintainable Python is a powerful, dynamic language. Rather than bake

fast.ai 810 Jan 06, 2023
Publish Xarray Datasets via a REST API.

Xpublish Publish Xarray Datasets via a REST API. Serverside: Publish a Xarray Dataset through a rest API ds.rest.serve(host="0.0.0.0", port=9000) Clie

xarray-contrib 106 Jan 06, 2023
Example of using FastAPI and MongoDB database.

FastAPI Todo Application Example of using FastAPI and MangoDB database. 💡 Prerequisites Python ⚙️ Build & Run The first thing to do is to clone the r

Bobynets Ivan 1 Oct 29, 2021