Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Overview

Handwritten Line Text Recognition using Deep Learning with Tensorflow

Description

Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train. More read this Medium Post

Why Deep Learning?

Why Deep Learning

Deep Learning self extracts features with a deep neural networks and classify itself. Compare to traditional Algorithms it performance increase with Amount of Data.

Basic Intuition on How it Works.

Step_wise_detail

  • First Use Convolutional Recurrent Neural Network to extract the important features from the handwritten line text Image.
  • The output before CNN FC layer (512x100x8) is passed to the BLSTM which is for sequence dependency and time-sequence operations.
  • Then CTC LOSS Alex Graves is used to train the RNN which eliminate the Alignment problem in Handwritten, since handwritten have different alignment of every writers. We just gave the what is written in the image (Ground Truth Text) and BLSTM output, then it calculates loss simply as -log("gtText"); aim to minimize negative maximum likelihood path.
  • Finally CTC finds out the possible paths from the given labels. Loss is given by for (X,Y) pair is: Ctc_Loss
  • Finally CTC Decode is used to decode the output during Prediction.

Detail Project Workflow

Architecture of Model

  • Project consists of Three steps:
    1. Multi-scale feature Extraction --> Convolutional Neural Network 7 Layers
    2. Sequence Labeling (BLSTM-CTC) --> Recurrent Neural Network (2 layers of LSTM) with CTC
    3. Transcription --> Decoding the output of the RNN (CTC decode) DetailModelArchitecture

Requirements

  1. Tensorflow 1.8.0
  2. Flask
  3. Numpy
  4. OpenCv 3
  5. Spell Checker autocorrect >=0.3.0 pip install autocorrect

Dataset Used

  • IAM dataset download from here
  • Only needed the lines images and lines.txt (ASCII).
  • Place the downloaded files inside data directory
The Trained model is available and download from this link. The trained model CER=8.32% and trained on IAM dataset with some additional created dataset.

To Train the model from scratch

$ python main.py --train

To validate the model

$ python main.py --validate

To Prediction

$ python main.py

Run in Web with Flask

$ python upload.py
Validation character error rate of saved model: 8.654728%
Python: 3.6.4 
Tensorflow: 1.8.0
Init with stored values from ../model/snapshot-24
Without Correction clothed leaf by leaf with the dioappoistmest
With Correction clothed leaf by leaf with the dioappoistmest

Prediction output on IAM Test Data PredictionOutput

Prediction output on Self Test Data PredictionOutput

See the project Devnagari Handwritten Word Recognition with Deep Learning for more insights.

Further Improvement

  • Using MDLSTM to recognize whole paragraph at once Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention
  • Line segementation can be added for full paragraph text recognition. For line segmentation you can use A* path planning algorithm or CNN model to seperate paragraph into lines.
  • Better Image preprocessing such as: reduce backgoround noise to handle real time image more accurately.
  • Better Decoding approach to improve accuracy. Some of the CTC Decoder found here

Feel Free to improve this project with pull Request.

This is part of my last semester project of Computer Engineering From Tribhuvan University. July 2019

Owner
sushant097
Machine Learning Engineer | Computer Vision Developer. Working in the field of Research, development of Machine learning and Computer Vision .
sushant097
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

Masao Taketani 52 Nov 11, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF

MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF Python class for converting (very fast) 3D Meshes/Surfaces to Raster DEMs

8 Sep 10, 2022
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Some bits of javascript to transcribe scanned pages using PageXML

nashi (nasḫī) Some bits of javascript to transcribe scanned pages using PageXML. Both ltr and rtl languages are supported. Try it! But wait, there's m

Andreas Büttner 15 Nov 09, 2022
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 239 Dec 13, 2022
This is a project to detect gestures to zoom in or out, using the real-time distance between the index finger and the thumb. It's based on OpenCV and Mediapipe.

Pinch-zoom This is a python project based on real-time hand-gesture detection, to zoom in or out, using the distance between the index finger and the

Harshit Bhalla 6 Jul 11, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023