Block fingerprinting for the beacon chain, for client identification & client diversity metrics

Overview

blockprint

This is a repository for discussion and development of tools for Ethereum block fingerprinting.

The primary aim is to measure beacon chain client diversity using on-chain data, as described in this tweet:

https://twitter.com/sproulM_/status/1440512518242197516

The latest estimate using the improved k-NN classifier for slots 2048001 to 2164916 is:

Getting Started

The raw data for block fingerprinting needs to be sourced from Lighthouse's block_rewards API.

This is a new API that is currently only available on the block-rewards-api branch, i.e. this pull request: https://github.com/sigp/lighthouse/pull/2628

Lighthouse can be built from source by following the instructions here.

VirtualEnv

All Python commands should be run from a virtualenv with the dependencies from requirements.txt installed.

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

k-NN Classifier

The best classifier implemented so far is a k-nearest neighbours classifier in knn_classifier.py.

It requires a directory of structered training data to run, and can be used either via a small API server, or in batch mode.

You can download a large (886M) training data set here.

To run in batch mode against a directory of JSON batches (individual files downloaded from LH), use this command:

./knn_classifier.py training_data_proc data_to_classify

Expected output is:

classifier score: 0.9886800869904645
classifying rewards from file slot_2048001_to_2050048.json
total blocks processed: 2032
Lighthouse,0.2072
Nimbus or Prysm,0.002
Nimbus or Teku,0.0025
Prysm,0.6339
Prysm or Teku,0.0241
Teku,0.1304

Training the Classifier

The classifier is trained from a directory of reward batches. You can fetch batches with the load_blocks.py script by providing a start slot, end slot and output directory:

./load_blocks.py 2048001 2048032 testdata

The directory testdata now contains 1 or more files of the form slot_X_to_Y.json downloaded from Lighthouse.

To train the classifier on this data, use the prepare_training_data.py script:

./prepare_training_data.py testdata testdata_proc

This will read files from testdata and write the graffiti-classified training data to testdata_proc, which is structured as directories of single block reward files for each client.

$ tree testdata_proc
testdata_proc
├── Lighthouse
│   ├── 0x03ae60212c73bc2d09dd3a7269f042782ab0c7a64e8202c316cbcaf62f42b942.json
│   └── 0x5e0872a64ea6165e87bc7e698795cb3928484e01ffdb49ebaa5b95e20bdb392c.json
├── Nimbus
│   └── 0x0a90585b2a2572305db37ef332cb3cbb768eba08ad1396f82b795876359fc8fb.json
├── Prysm
│   └── 0x0a16c9a66800bd65d997db19669439281764d541ca89c15a4a10fc1782d94b1c.json
└── Teku
    ├── 0x09d60a130334aa3b9b669bf588396a007e9192de002ce66f55e5a28309b9d0d3.json
    ├── 0x421a91ebdb650671e552ce3491928d8f78e04c7c9cb75e885df90e1593ca54d6.json
    └── 0x7fedb0da9699c93ce66966555c6719e1159ae7b3220c7053a08c8f50e2f3f56f.json

You can then use this directory as the first argument to ./knn_classifier.py.

Classifier API

With pre-processed training data installed in ./training_data_proc, you can host a classification API server like this:

gunicorn --reload api_server --timeout 1800

It will take a few minutes to start-up while it loads all of the training data into memory.

Initialising classifier, this could take a moment...
Start-up complete, classifier score is 0.9886800869904645

Once it has started up, you can make POST requests to the /classify endpoint containing a single JSON-encoded block reward. There is an example input file in examples.

curl -s -X POST -H "Content-Type: application/json" --data @examples/single_teku_block.json "http://localhost:8000/classify"

The response is of the following form:

{
  "block_root": "0x421a91ebdb650671e552ce3491928d8f78e04c7c9cb75e885df90e1593ca54d6",
  "best_guess_single": "Teku",
  "best_guess_multi": "Teku",
  "probability_map": {
    "Lighthouse": 0.0,
    "Nimbus": 0.0,
    "Prysm": 0.0,
    "Teku": 1.0
  }
}
  • best_guess_single is the single client that the classifier deemed most likely to have proposed this block.
  • best_guess_multi is a list of 1-2 client guesses. If the classifier is more than 95% sure of a single client then the multi guess will be the same as best_guess_single. Otherwise it will be a string of the form "Lighthouse or Teku" with 2 clients in lexicographic order. 3 client splits are never returned.
  • probability_map is a map from each known client label to the probability that the given block was proposed by that client.

TODO

  • Improve the classification algorithm using better stats or machine learning (done, k-NN).
  • Decide on data representations and APIs for presenting data to a frontend (done).
  • Implement a web backend for the above API (done).
  • Polish and improve all of the above.
Owner
Sigma Prime
Blockchain & Information Security Services
Sigma Prime
Given tool find related trending keywords of input keyword

blog_generator Given tool find related trending keywords of input keyword (blog_related_to_keyword). Then cretes a mini blog. Currently its customised

Shivanshu Srivastava 2 Nov 30, 2021
Senator Stock Trading Tester

Senator Stock Trading Tester Program to compare stock performance of Senator's transactions vs when the sale is disclosed. Using to find if tracking S

Cole Cestaro 1 Dec 07, 2021
UFDR2DIR - A script to convert a Cellebrite UFDR to the original file structure

UFDR2DIR A script to convert a Cellebrite UFDR to it's original file and directo

DFIRScience 25 Oct 24, 2022
A python API act as Control Center to control your Clevo Laptop via wmi on windows.

ClevoPyControlCenter A python API act as Control Center to control your Clevo Laptop via wmi on windows. Usage # pip3 install pymi from clevo_wmi impo

3 Sep 19, 2022
A student information management system in Python

Student-information-management-system 本项目是一个学生信息管理系统,这个项目是用Python语言实现的,也实现了图形化界面的显示,同时也实现了管理员端,学生端两个登陆入口,同时底层使用的是Redis做的数据持久化。 This project is a stude

liuyunfei 7 Nov 15, 2022
Twikoo自定义表情列表 | HexoPlusPlus自定义表情列表(其实基于OwO的项目都可以用的啦)

Twikoo-Magic 更新说明 2021/1/15 基于2021/1/14 Twikoo 更新1.1.0-beta,所有表情都将以缩写形式(如:[ text ]:)输出。1/14之前本仓库有部分表情text缺失及重复, 导致无法正常使用表情 1/14后的所有表情json列表已全部更新

noionion 90 Jan 05, 2023
Demo scripts for the Kubernetes Security Webinar

Kubernetes Security Webinar [in Russian] YouTube video (October 13, 2021) Authors: Artem Yushkovsky (LinkedIn, GitHub) Maxim Mosharov @ Whitespots.io

Slurm 34 Dec 06, 2022
An Android app that runs Elm in a webview. And a Python script to build the app or install it on the device.

Requirements You need to have installed: the Android SDK Elm Python git Starting a project Clone this repo and cd into it: $ git clone https://github.

Benjamin Le Forestier 11 Mar 17, 2022
Simple tools to make/dump CPC+ CPR cartridge files

Simple tools to make/dump CPC+ CPR cartridge files mkcpr.py: make a CPR file from files (one chunk per file); see notes cprdump.py: dump the chunks of

Juan J. Martínez 3 May 30, 2022
Small tool to use hero .json files created with Optolith for The Dark Eye/ Das Schwarze Auge 5 to perform talent probes.

DSA5-ProbeMaker A little tool for The Dark Eye 5th Edition (Das Schwarze Auge 5) to load .json from Optolith character generation and easily perform t

2 Jan 06, 2022
A reference implementation for processing the content.log files found at opendata.dwd.de/weather

A reference implementation for processing the content.log files found at opendata.dwd.de/weather.

Deutscher Wetterdienst (DWD) 6 Nov 26, 2022
Generic NDJSON importer for hashlookup server

Generic NDJSON importer for hashlookup server Usage usage: hashlookup-json-importer.py [-h] [-v] [-s SOURCE] [-p PARENT] [--parent-meta PARENT_META [P

hashlookup 2 Jan 19, 2022
Python DSL for writing PDDL

PDDL in Python – Python DSL for writing a PDDL A minimal implementation of a DSL which allows people to write PDDL in python. Based on parsing python’

International Business Machines 21 Nov 22, 2022
Some scripts for the Reverse engineered (old) api of CafeBazaar

bazz Note: This project is done and published only for educational purposes. Some scripts for the Reverse engineered (old) API of CafeBazaar. Be aware

Mohsen Tahmasebi 35 Dec 25, 2022
En este repositorio realizaré la tarea del laberinto.

Laberinto Perfil de GitHub del autor de este proyecto: @jmedina28 En este repositorio queda resuelta la composición de un laberinto 5x5 con sus muros

Juan Medina 1 Dec 11, 2021
Basic code and description for GoBigger challenge 2021.

GoBigger Challenge 2021 en / 中文 Challenge Description 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent Decision Intelligence Challeng

OpenDILab 183 Dec 29, 2022
Tools for dos (denial-of-service) website / web server

DoS Attack Tools Tools for dos (denial-of-service) website / web server di buat olah NurvySec How to install on debian / ubuntu $ apt update $ apt ins

nurvy 1 Feb 10, 2022
Python-geoarrow - Storing geometry data in Apache Arrow format

geoarrow Storing geometry data in Apache Arrow format Installation $ pip install

Joris Van den Bossche 11 Mar 03, 2022
Imports an object based on a string import_string('package.module:function_name')() - Based on werkzeug.utils

DEPRECATED don't use it. Please do: import importlib foopath = 'src.apis.foo.Foo' module_name = '.'.join(foopath.split('.')[:-1]) # to get src.apis.f

Bruno Rocha Archived Projects 11 Nov 12, 2022
CupScript is a simple programing language made with python

CupScript CupScript is a simple programming language made with python It includes some basic functions, variables, loops, and some other built in func

FUSEN 23 Dec 29, 2022