A multi-tenant multi-client scalable product categorising demo stack

Overview

Better Categories 4All: A multi-tenant multi-client product categorising stack

The steps to reproduce training and inference are in the end of this file, sorry for the long explanation.

example workflow

Problem scope

We want to create a full product categorization stack for multiple clients. For each client, and each product we want to find the 5 most suitable categories.

Project structure

The project is split into two layers:

  • ML layer: the python package for training and serving model. It's a pipenv based project. The Pipfile include all required dependencies. The python environment generated by pipenv is used to run the training/inference and run also unit tests. Code is generic for all clients.
  • Orchestration layer: the Airflow DAGs for training and prediction. Each client has its own training DAG and its prediction DAG. These DAGs uses the Airflow BashOperator to execute training and prediction inside the pipenv environment.

img_1.png

Why one DAG per a client instead of a single DAG for all client ?

We could have a single DAG that train all clients. So each client has its own training task inside the same DAG. I chose rather to build a separate DAG for each client. Several reasons motivated my decision:

  • In my past experiences, some individual cients may have problem s with their data and it's more practical to have a DAG per client when it's come to day to day monitoring.
  • New clients may come and other may leave and we may endup with a DAG that keeps constantly adding new Task and loosing others and it's against airflow best practicies.
  • It make sens to have one failed DAG and 99 other successful DAGs rather than a single DAG failing all the time because of one random client training failing each day.

Training

In this part we will train a classification model for each client.

Training package

The package categories_classification include a training function train_model. It takes the following inputs:

  • client_id: the id of the client in training dataset
  • features: a list of features names to use in training
  • model_params: a dict of params to be passed to model python class.
  • training_date: the execution date of training, used to track the training run.

The chosen model is scikit-learn implementation of random forest sklearn.ensemble.RandomForestClassifier. For the sake of simplicity, we didn't fine tune model parameters, but optimal params can be set in config.

In addition to train_model function, a cli binary is created to be able to run training directly from command line. The binary command trainer runs the training:

pipenv run python categories_classification_cli.py trainer --help

Usage: categories_classification_cli.py trainer [OPTIONS]

Options:
  --client_id TEXT     The id of the client.  [required]
  --features TEXT      The list of input features.  [required]
  --model_params TEXT  Params to be passed to model.  [required]
  --training_date TEXT  The training date.  [required]
  --help               Show this message and exit.

Data and model paths

All data are stored in a command base path retrieved from environment variable DATA_PREFIX, default is ./data. Given a client id, training data is loaded from $DATA_PREFIX/train/client_id= /data_train.csv.gz .

Splitting data

Before training, data is split into training set and test set. The train set is used to train the model while the test set is used to evaluate the model after training. Evaluation score is logged.

Model tracking and versioning

The whole training event is tracked in Mlfow as a training run. Each client hash its own experiments and its own model name following the convention " _model". The tracking process saves also metrics and model parameters in the same run metadata.

Finally, the model is saved in Mlflow Registry with name " _model". Saving the model means a new model version is saved in Mlflow, as the same model may have multiple versions.

Prediction

In this part, we will predict product categories using previously trained model.

Prediction package

The package categories_classification include a prediction function predict_categories. It takes the following inputs:

  • client_id: the id of the client in training dataset
  • inference_date: an inference execution date to version output categories

The prediction is done through spark so that it can be done on big datasets. Prediction dataset is loaded in spark DataFrame. We use Mlflow to get the latest model version and load latest model. The model is then broadcasted in Spark in order to be available in Spark workers. To apply the model to the prediction dataset, I use a new Spark 3.0 experimental feature called mapInPandas. This Dataframe method maps an iterator of batches (pandas Dataframe) using a prediction used-defined function that outputs also a pandas Dataframe. This is done thanks to PyArrow efficient data transfer between Spark JVM and python pandas runtime.

Prediction function

The advantage of mapInPandas feature comparing to classic pandas_udf is that we can add more rows than we have as input. Thus for each product, we can output 5 predicted categories with their probabilities and ranked from 0 to 4. The predicted label are then persisted to filesystem as parquet dataset.

Model version retrieval

Before loading the model, we use Mlflow to get the latest version of the model. In production system we probabilities want to push model to staging, verify its metrics or validate it before passing it to production. Let's suppose that we are working the same stage line, we use MlflowClient to connect to Mlflow Registry and get the latest model version. The version is then used to build the latest model uri.

Reproducing training and inference

Pipenv initialization

First you need to check you have pipenv installed locally otherwise you can install it with pip install pipenv.

Then you need to initialize the pipenv environment with the following command:

make init-pipenv

This may take some time as it will install all required dependencies. Once done you can run linter (pylint) and unit tests:

make lint
make unit-tests

Airflow/Mlflow initialization

You need also to initialize the local airflow stack, thus building a custom airflow docker image including the pipenv environment, the mlflow image and initializing the Airflow database.

make init-airflow

Generate DAGs

Airflow dags needs to be generated using config file in conf/clients_config.yaml. It's already created with the 10 clients example datasets. But if you want you can add new clients or change the actual configuration. For each client you must include the list of features and optional model params.

Then, you can generate DAGs using the following command:

make generate-dags

This will can the script scripts/generate_dags.py which will:

  • load training and inference DAG templates from dags_templates, they are jinja2 templates.
  • load conf from conf/clients_config.yaml
  • render DAG for each client and each template

Start local Airflow

You can start local airflow with following command:

make start-airflow

Once all services started, you can go to you browser and visit:

  • Airflow UI in http://localhost:8080
  • Mlflow UI in http://localhost:5000

Run training and inference

In Airflow all DAGs are disabled by default. To run training for a client you can enable the DAG and it will immediately trigger the training.

Once the model in Mlflow, you can enable the inference DAG and it will immediately trigger a prediction.

Inspect result

To inspect result you run a local jupyter, you do it with:

make run-jupyter

Then visit notebook inspect_inference_result.ipynb and run it to check the prediction output.

Yes, it's true :two_hearts: This repository has 316 stars.

Yes, it's true! Inspired by a similar repository from @RealPeha, but implemented using a webhook on AWS Lambda and API Gateway, so it's serverless! If

510 Dec 28, 2022
Indian Space Research Organisation API With Python

ISRO Indian Space Research Organisation API Installation pip install ISRO Usage import isro isro.spacecrafts() # returns spacecrafts data isro.lau

Fayas Noushad 5 Aug 11, 2022
A Powerful, Smart And Simple Userbot In Pyrogram.

Eagle-USERBOT 🇮🇳 A Powerful, Smart And Simple Userbot In Pyrogram. Support 🚑 Inspiration & Credits Userge-X Userge Pokurt Pyrogram Code Owners Mast

Masterolic 1 Nov 28, 2021
A Telegram Bin Checker Bot made with python for check Bin valid or Invalid. 💳

Bin Checker Bot A Telegram Bin Checker Bot made with python for check Bin valid or Invalid. 📌 Deploy On Heroku 🏷 Environment Variables API_ID - Your

Chamindu Denuwan 20 Dec 10, 2022
Fetch tracking numbers of Amazon orders, for the ease of the logistics.

Amazon-Tracking-Number Fetch tracking numbers of Amazon orders, for the ease of the logistics. Read Me First (How to use this code): Get Amazon "Items

Tony Yao 1 Nov 02, 2021
Some 3Commas helper bots, AltRank, GalaxyScore, Watchlist, Auto-Compound

3Commas Cyber Bot Helpers A collection of 3Commas bot helpers I wrote. (collection will grow over time) Disclaimer THE SOFTWARE IS PROVIDED "AS IS", W

Ron Klinkien 176 Jan 02, 2023
A python script to acquire multiple aws ec2 instances in a forensically sound-ish way

acquire_ec2.py The script acquire_ec2.py is used to automatically acquire AWS EC2 instances. The script needs to be run on an EC2 instance in the same

Deutsche Telekom Security GmbH 31 Sep 10, 2022
Dynamic Twitter banner, to show off your spotify status. Banner updated every 5 minutes.

Spotify Twitter Banner Dynamic Twitter banner, to show off your spotify status. Banner updated every 5 minutes. Installation and Usage Install the dep

Sunrit Jana 23 Jan 05, 2023
A very simple Salesforce.com REST API client for Python

Simple Salesforce Simple Salesforce is a basic Salesforce.com REST API client built for Python 3.5, 3.6, 3.7 and 3.8. The goal is to provide a very lo

simple salesforce 1.4k Dec 29, 2022
:evergreen_tree: Python module for communicating with the Taiga API

python-taiga A python wrapper for the Taiga REST API. Documentation: https://python-taiga.readthedocs.io/ Usage: : https://python-taiga.readthedocs.io

Nephila 87 Oct 12, 2022
SmartFile API Client (Python).

A SmartFile Open Source project. Read more about how SmartFile uses and contributes to Open Source software. Summary This library includes two API cli

SmartFile 19 Jan 11, 2022
A Telegram Bot to Play Audio in Voice Chats With Youtube and Deezer support. Supports Live streaming from youtube Supports Mega Radio Fm Streamings

Bot To Stream Musics on PyTGcalls with Channel Support. A Telegram Bot to Play Audio in Voice Chats With Supports Live streaming from youtube and Mega

Shamil Habeeb 37 Dec 15, 2022
This is a simple Telegram bot to Delete User Messages based on Groupmembers Votes. Heroku deployable

ibCleaner Bot This is a simple Telegram bot to Delete User Messages based on Groupmembers Votes. Deploy to Heroku Deploy locally Edit config.py and ad

8 Oct 21, 2022
Python Library to Extract youtube video Tags without Youtube API

YoutubeTags Python Library to Extract youtube video Tags without Youtube API Installation pip install YoutubeTags Example import YoutubeTags from Yout

Nuhman Pk 17 Nov 12, 2022
Fastest Pancakeswap Sniper BOT TORNADO CASH 2022-V1 (MAC WINDOWS ANDROID LINUX)

Fastest Pancakeswap Sniper BOT TORNADO CASH 2022-V1 (MAC WINDOWS ANDROID LINUX) ⭐️ AUTO BUY TOKEN ON LAUNCH AFTER ADD LIQUIDITY ⭐️ ⭐️ Support Uniswap

Crypto Trader 7 Jan 31, 2022
2b2t Priority queue discord bot announcer

2b2t Priority queue discord bot announcer Commands !prioq - Checks the priority queue length and sends it. !start - Starts a loop that sends the sta

Gumi 5 Jun 06, 2022
Use Seaborn to visualize interpret the byte layout of Solana account types

solana-account-vis Use Seaborn to visually interpret the byte layout of Solana account types Usage from account_visualization import generate_account_

Jarry Xiao 15 Aug 25, 2022
This is a TG Video Compress BoT. Product by BINARY Tech

🌀 Video Compressor Bot Product by BINARY Tech Deploy to Heroku The Hard Way virtualenv -p python3 VENV . ./VENV/bin/activate pip install -r requireme

1 Jan 04, 2022
Paginator for Dis-Snek Python Discord API wrapper

snek-paginator Paginator for Dis-Snek Python Discord API wrapper Installation: pip install -U snek-paginator Basic Example: from dis_snek.client impo

1 Nov 04, 2021
A Python 2.7/3.x module for Amcrest Cameras using the SDK HTTP API.

A Python 2.7/3.x module for Amcrest Cameras using the SDK HTTP API. Amcrest and Dahua devices share similar firmwares. Dahua Cameras and NVRs also work with this module.

Marcelo Moreira de Mello 176 Dec 21, 2022