Optical character recognition for Japanese text, with the main focus being Japanese manga

Overview

Manga OCR

Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Transformers' Vision Encoder Decoder framework.

Manga OCR can be used as a general purpose printed Japanese OCR, but its main goal was to provide a high quality text recognition, robust against various scenarios specific to manga:

  • both vertical and horizontal text
  • text with furigana
  • text overlaid on images
  • wide variety of fonts and font styles
  • low quality images

Unlike many OCR models, Manga OCR supports recognizing multi-line text in a single forward pass, so that text bubbles found in manga can be processed at once, without splitting them into lines.

See also:

  • Poricom, a GUI reader, which uses manga-ocr
  • mokuro, a tool, which uses manga-ocr to generate an HTML overlay for manga
  • Xelieu's guide, a comprehensive guide on setting up a reading and mining workflow with manga-ocr/mokuro (and many other useful tips)
  • Development code, including code for training and synthetic data generation: link
  • Description of synthetic data generation pipeline + examples of generated images: link

Installation

You need Python 3.6, 3.7, 3.8 or 3.9. Unfortunately, PyTorch does not support Python 3.10 yet.

Some users have reported problems with Python installed from Microsoft Store. If you see an error: ImportError: DLL load failed while importing fugashi: The specified module could not be found., try installing Python from the official site.

If you want to run with GPU, install PyTorch as described here, otherwise this step can be skipped.

Run in command line:

pip3 install manga-ocr

Usage

Python API

from manga_ocr import MangaOcr

mocr = MangaOcr()
text = mocr('/path/to/img')

or

import PIL.Image

from manga_ocr import MangaOcr

mocr = MangaOcr()
img = PIL.Image.open('/path/to/img')
text = mocr(img)

Running in the background

Manga OCR can run in the background and process new images as they appear.

You might use a tool like ShareX to manually capture a region of the screen and let the OCR read it either from the system clipboard, or a specified directory. By default, Manga OCR will write recognized text to clipboard, from which it can be read by a dictionary like Yomichan. Reading images from clipboard works only on Windows and macOS, on Linux you should read from a directory instead.

Your full setup for reading manga in Japanese with a dictionary might look like this:

capture region with ShareX -> write image to clipboard -> Manga OCR -> write text to clipboard -> Yomichan

manga_ocr_demo.mp4
  • To read images from clipboard and write recognized texts to clipboard, run in command line:
    manga_ocr
    
  • To read images from ShareX's screenshot folder, run in command line:
    manga_ocr "/path/to/sharex/screenshot/folder"
    

Note that when running in the clipboard scanning mode, any image that you copy to clipboard will be processed by OCR and replaced by recognized text. If you want to be able to copy and paste images as usual, you should use the folder scanning mode instead and define a separate task in ShareX just for OCR, which saves screenshots to some folder without copying them to clipboard.

When running for the first time, downloading the model (~400 MB) might take a few minutes. The OCR is ready to use after OCR ready message appears in the logs.

  • To see other options, run in command line:
    manga_ocr --help
    

If manga_ocr doesn't work, you might also try replacing it with python -m manga_ocr.

Usage tips

  • OCR supports multi-line text, but the longer the text, the more likely some errors are to occur. If the recognition failed for some part of a longer text, you might try to run it on a smaller portion of the image.
  • The model was trained specifically to handle manga well, but should do a decent job on other types of printed text, such as novels or video games. It probably won't be able to handle handwritten text though.
  • The model always attempts to recognize some text on the image, even if there is none. Because it uses a transformer decoder (and therefore has some understanding of the Japanese language), it might even "dream up" some realistically looking sentences! This shouldn't be a problem for most use cases, but it might get improved in the next version.

Examples

Here are some cherry-picked examples showing the capability of the model.

image Manga OCR result
素直にあやまるしか
立川で見た〝穴〟の下の巨大な眼は:
実戦剣術も一流です
第30話重苦しい闇の奥で静かに呼吸づきながら
よかったじゃないわよ!何逃げてるのよ!!早くあいつを退治してよ!
ぎゃっ
ピンポーーン
LINK!私達7人の力でガノンの塔の結界をやぶります
ファイアパンチ
少し黙っている
わかるかな〜?
警察にも先生にも町中の人達に!!

Contact

For any inquiries, please feel free to contact me at [email protected]

Acknowledgments

This project was done with the usage of:

Owner
Maciej Budyś
Maciej Budyś
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022
How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Real Time Object Recognition From your Screen Desktop . In this post, I will explain how to build a simply program to detect objects from you desktop

Ruslan Magana Vsevolodovna 2 Sep 28, 2022
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
Automatically remove the mosaics in images and videos, or add mosaics to them.

Automatically remove the mosaics in images and videos, or add mosaics to them.

Hypo 1.4k Dec 30, 2022
The code for “Oriented RepPoints for Aerail Object Detection”

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints”, Under review. (arXiv preprint) Introduction Or

WentongLi 207 Dec 24, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
A pure pytorch implemented ocr project including text detection and recognition

ocr.pytorch A pure pytorch implemented ocr project. Text detection is based CTPN and text recognition is based CRNN. More detection and recognition me

coura 444 Dec 30, 2022