snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator

Related tags

Networkingsnappi-trex
Overview

snappi-trex

license Project Status: Active – The project has reached a stable, usable state and is being actively developed. Build Total alerts Language grade: Python pypi python

snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator

Design

snappi-trex converts snappi Open Traffic Generator API configuration into the equivalent TRex STL Client configuration. This allows users to use the TRex Traffic Generator and its useful features without having to write complex TRex scripts.

diagram

The above diagram outlines the overall process of how the snappi Open Traffic Generator API is able to interface with TRex and generate traffic over its network interfaces. snappi-trex is essential to convert snappi scripts into the equivalent TRex STL Client instructions.


snappi-trex usage follows the standard usage of snappi with a few modifications outlined in the Usage document.

Demos

Click here for the Quickstart Guide Video Tutorial

  • This goes over the installation and setup for snappi-trex, and how to run a basic snappi script using snappi-trex

Click here for the snappi-trex P4 PTF Demo

  • This demonstrates snappi-trex being used with the P4 Packet Testing Framework in a 4 Port Mesh configuration

Table of Contents


Quickstart

snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator


--> Click here for the Quickstart Guide Video Tutorial


Installing and Running TRex

TRex must be installed and running before proceeding

TRex must be installed and configured in order to use snappi-trex. For a quick tutorial on TRex installation, running, and basic usage, check out my TRex Tutorial


Installing snappi-trex

Make sure python-pip3 is installed

sudo apt-get install python3-pip

Install snappi and the snappi-trex extension

pip3 install snappi==0.4.26 snappi[trex]

Start Scripting

Let's run our first script called hello_snappi_trex.py: A basic snappi script that transmits 1000 UDP packets bidirectionally between two ports and verifies that they are received. This file can be found at examples/hello_snappi_trex.py in the snappi-trex Github Repo.

git clone https://github.com/open-traffic-generator/snappi-trex
python3 snappi-trex/examples/hello_snappi_trex.py

You may also just paste the script in from below.

hello_snappi_trex.py
p2').flow(name='flow p2->p1') # and assign source and destination ports for each f1.tx_rx.port.tx_name, f1.tx_rx.port.rx_name = p1.name, p2.name f2.tx_rx.port.tx_name, f2.tx_rx.port.rx_name = p2.name, p1.name # configure packet size, rate and duration for both flows f1.size.fixed, f2.size.fixed = 128, 256 for f in cfg.flows: # send 1000 packets and stop f.duration.fixed_packets.packets = 1000 # send 1000 packets per second f.rate.pps = 1000 # configure packet with Ethernet, IPv4 and UDP headers for both flows eth1, ip1, udp1 = f1.packet.ethernet().ipv4().udp() eth2, ip2, udp2 = f2.packet.ethernet().ipv4().udp() # set source and destination MAC addresses eth1.src.value, eth1.dst.value = '00:AA:00:00:04:00', '00:AA:00:00:00:AA' eth2.src.value, eth2.dst.value = '00:AA:00:00:00:AA', '00:AA:00:00:04:00' # set source and destination IPv4 addresses ip1.src.value, ip1.dst.value = '10.0.0.1', '10.0.0.2' ip2.src.value, ip2.dst.value = '10.0.0.2', '10.0.0.1' # set incrementing port numbers as source UDP ports udp1.src_port.increment.start = 5000 udp1.src_port.increment.step = 2 udp1.src_port.increment.count = 10 udp2.src_port.increment.start = 6000 udp2.src_port.increment.step = 4 udp2.src_port.increment.count = 10 # assign list of port numbers as destination UDP ports udp1.dst_port.values = [4000, 4044, 4060, 4074] udp2.dst_port.values = [8000, 8044, 8060, 8074, 8082, 8084] print('Pushing traffic configuration ...') api.set_config(cfg) print('Starting packet capture on all configured ports ...') cs = api.capture_state() cs.state = cs.START api.set_capture_state(cs) print('Starting transmit on all configured flows ...') ts = api.transmit_state() ts.state = ts.START api.set_transmit_state(ts) print('Checking metrics on all configured ports ...') print('Expected\tTotal Tx\tTotal Rx') assert wait_for(lambda: metrics_ok(api, cfg)), 'Metrics validation failed!' assert captures_ok(api, cfg), 'Capture validation failed!' print('Test passed !') def metrics_ok(api, cfg): # create a port metrics request and filter based on port names req = api.metrics_request() req.port.port_names = [p.name for p in cfg.ports] # include only sent and received packet counts req.port.column_names = [req.port.FRAMES_TX, req.port.FRAMES_RX] # fetch port metrics res = api.get_metrics(req) # calculate total frames sent and received across all configured ports total_tx = sum([m.frames_tx for m in res.port_metrics]) total_rx = sum([m.frames_rx for m in res.port_metrics]) expected = sum([f.duration.fixed_packets.packets for f in cfg.flows]) print('%d\t\t%d\t\t%d' % (expected, total_tx, total_rx)) return expected == total_tx and total_rx >= expected def captures_ok(api, cfg): import dpkt print('Checking captured packets on all configured ports ...') print('Port Name\tExpected\tUDP packets') result = [] for p in cfg.ports: exp, act = 1000, 0 # create capture request and filter based on port name req = api.capture_request() req.port_name = p.name # fetch captured pcap bytes and feed it to pcap parser dpkt pcap = dpkt.pcap.Reader(api.get_capture(req)) for _, buf in pcap: # check if current packet is a valid UDP packet eth = dpkt.ethernet.Ethernet(buf) if isinstance(eth.data.data, dpkt.udp.UDP): act += 1 print('%s\t\t%d\t\t%d' % (p.name, exp, act)) result.append(exp == act) return all(result) def wait_for(func, timeout=10, interval=0.2): """ Keeps calling the `func` until it returns true or `timeout` occurs every `interval` seconds. """ import time start = time.time() while time.time() - start <= timeout: if func(): return True time.sleep(interval) print('Timeout occurred !') return False if __name__ == '__main__': hello_snappi_trex() ">
import snappi
import sys, os

# Replace v2.90 with the installed version of TRex. 
# Change '/opt/trex' if you installed TRex in another location
trex_path = '/opt/trex/v2.90/automation/trex_control_plane/interactive'
sys.path.insert(0, os.path.abspath(trex_path))


def hello_snappi_trex():
    """
    This script does following:
    - Send 1000 packets back and forth between the two ports at a rate of
      1000 packets per second.
    - Validate that total packets sent and received on both interfaces is as
      expected using port metrics.
    - Validate that captured UDP packets on both the ports are as expected.
    """
    # create a new API instance where host points to controller
    api = snappi.api(ext='trex')
    # and an empty traffic configuration to be pushed to controller later on
    cfg = api.config()

    # add two ports where location points to traffic-engine (aka ports)
    p1, p2 = (
        cfg.ports
        .port(name='p1')
        .port(name='p2')
    )

    # add layer 1 property to configure same speed on both ports
    ly = cfg.layer1.layer1(name='ly')[-1]
    ly.port_names = [p1.name, p2.name]
    ly.speed = ly.SPEED_1_GBPS

    # enable packet capture on both ports
    cp = cfg.captures.capture(name='cp')[-1]
    cp.port_names = [p1.name, p2.name]

    # add two traffic flows
    f1, f2 = cfg.flows.flow(name='flow p1->p2').flow(name='flow p2->p1')
    # and assign source and destination ports for each
    f1.tx_rx.port.tx_name, f1.tx_rx.port.rx_name = p1.name, p2.name
    f2.tx_rx.port.tx_name, f2.tx_rx.port.rx_name = p2.name, p1.name

    # configure packet size, rate and duration for both flows
    f1.size.fixed, f2.size.fixed = 128, 256
    for f in cfg.flows:
        # send 1000 packets and stop
        f.duration.fixed_packets.packets = 1000
        # send 1000 packets per second
        f.rate.pps = 1000

    # configure packet with Ethernet, IPv4 and UDP headers for both flows
    eth1, ip1, udp1 = f1.packet.ethernet().ipv4().udp()
    eth2, ip2, udp2 = f2.packet.ethernet().ipv4().udp()

    # set source and destination MAC addresses
    eth1.src.value, eth1.dst.value = '00:AA:00:00:04:00', '00:AA:00:00:00:AA'
    eth2.src.value, eth2.dst.value = '00:AA:00:00:00:AA', '00:AA:00:00:04:00'

    # set source and destination IPv4 addresses
    ip1.src.value, ip1.dst.value = '10.0.0.1', '10.0.0.2'
    ip2.src.value, ip2.dst.value = '10.0.0.2', '10.0.0.1'

    # set incrementing port numbers as source UDP ports
    udp1.src_port.increment.start = 5000
    udp1.src_port.increment.step = 2
    udp1.src_port.increment.count = 10

    udp2.src_port.increment.start = 6000
    udp2.src_port.increment.step = 4
    udp2.src_port.increment.count = 10

    # assign list of port numbers as destination UDP ports
    udp1.dst_port.values = [4000, 4044, 4060, 4074]
    udp2.dst_port.values = [8000, 8044, 8060, 8074, 8082, 8084]

    print('Pushing traffic configuration ...')
    api.set_config(cfg)

    print('Starting packet capture on all configured ports ...')
    cs = api.capture_state()
    cs.state = cs.START
    api.set_capture_state(cs)

    print('Starting transmit on all configured flows ...')
    ts = api.transmit_state()
    ts.state = ts.START
    api.set_transmit_state(ts)

    print('Checking metrics on all configured ports ...')
    print('Expected\tTotal Tx\tTotal Rx')
    assert wait_for(lambda: metrics_ok(api, cfg)), 'Metrics validation failed!'

    assert captures_ok(api, cfg), 'Capture validation failed!'

    print('Test passed !')


def metrics_ok(api, cfg):
    # create a port metrics request and filter based on port names
    req = api.metrics_request()
    req.port.port_names = [p.name for p in cfg.ports]
    # include only sent and received packet counts
    req.port.column_names = [req.port.FRAMES_TX, req.port.FRAMES_RX]

    # fetch port metrics
    res = api.get_metrics(req)
    # calculate total frames sent and received across all configured ports
    total_tx = sum([m.frames_tx for m in res.port_metrics])
    total_rx = sum([m.frames_rx for m in res.port_metrics])
    expected = sum([f.duration.fixed_packets.packets for f in cfg.flows])

    print('%d\t\t%d\t\t%d' % (expected, total_tx, total_rx))

    return expected == total_tx and total_rx >= expected


def captures_ok(api, cfg):
    import dpkt
    print('Checking captured packets on all configured ports ...')
    print('Port Name\tExpected\tUDP packets')

    result = []
    for p in cfg.ports:
        exp, act = 1000, 0
        # create capture request and filter based on port name
        req = api.capture_request()
        req.port_name = p.name
        # fetch captured pcap bytes and feed it to pcap parser dpkt
        pcap = dpkt.pcap.Reader(api.get_capture(req))
        for _, buf in pcap:
            # check if current packet is a valid UDP packet
            eth = dpkt.ethernet.Ethernet(buf)
            if isinstance(eth.data.data, dpkt.udp.UDP):
                act += 1

        print('%s\t\t%d\t\t%d' % (p.name, exp, act))
        result.append(exp == act)

    return all(result)


def wait_for(func, timeout=10, interval=0.2):
    """
    Keeps calling the `func` until it returns true or `timeout` occurs
    every `interval` seconds.
    """
    import time
    start = time.time()

    while time.time() - start <= timeout:
        if func():
            return True
        time.sleep(interval)

    print('Timeout occurred !')
    return False


if __name__ == '__main__':
    hello_snappi_trex()


Output

If everything is working correctly, you should see a similar output as this.

Pushing traffic configuration ...
Starting packet capture on all configured ports ...
Starting transmit on all configured flows ...
Checking metrics on all configured ports ...
Expected        Total Tx        Total Rx
2000            19              17
2000            445             437
2000            881             881
2000            1325            1325
2000            1761            1761
2000           2000            2000
Checking captured packets on all configured ports ...
Port Name       Expected        UDP packets
p1              1000            1000
p2              1000            1000
Test passed !
You might also like...
These scripts send notifications to a Webex space when a new IP is banned by Expressway, and allow to request more info or change the ban status
These scripts send notifications to a Webex space when a new IP is banned by Expressway, and allow to request more info or change the ban status

Spam Call and Toll Fraud Mitigation Cisco Expressway release X14 is able to mitigate spam calls and toll fraud attempts by jailing the spam IP address

A repository dedicated to IoT(internet of things ) and python scripts
A repository dedicated to IoT(internet of things ) and python scripts

πŸ“‘ Introduction Week of Learning is a weekly program in which you will get all the necessary knowledge about Circuit-Building, Arduino and Micro-Contr

Repo used to maintain all notes and scripts developed during my DevNet Expert studies

DevNet Expert Studies Exam Date: TBD (Waiting for registration to open) This repository will be used to track my progress and maintain all notes/scrip

 Python Scripts for Cisco Identity Services Engine (ISE)
Python Scripts for Cisco Identity Services Engine (ISE)

A set of Python scripts to configure a freshly installed Cisco Identity Services Engine (ISE) for simple operation; in my case, a basic Cisco Software-Defined Access environment.

DataShare - Simple library for data sharing between scripts and public functions calling

DataShare - Simple library for data sharing between scripts and public functions calling. Installation. Install code, Delete LICENSE, README, readme.t

Python Scrcpy Client - allows you to view and control android device in realtime
Python Scrcpy Client - allows you to view and control android device in realtime

Python Scrcpy Client This package allows you to view and control android device in realtime. Note: This gif is compressed and experience lower quality

InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state.
InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state.

🧞 InfraGenie InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state. T

A simple and lightweight server that allows clients to connect and launch a shell remotely through a browser.

carrotsh A simple and lightweight server that allows clients to connect and launch a shell remotely through a browser. Uses xterm.js for the frontend

A web-based app that allows easy, simple - and if desired high-throughput - analysis of qPCR data
A web-based app that allows easy, simple - and if desired high-throughput - analysis of qPCR data

qpcr-Analyser A web-based GUI for the qpcr package that allows easy, simple and high-throughput analysis of qPCR data. As is described in more detail

Owner
Open Traffic Generator
Open Traffic Generator
A transport agnostic sync/async RPC library that focuses on exposing services with a well-defined API using popular protocols.

WARNING: This is from spyne's development branch. This version is not released yet! Latest stable release can be found in the 2_13 branch. If you like

1.1k Dec 23, 2022
ExtDNS synchronizes labeled records in docker-compose with DNS providers.

ExtDNS for docker-compose ExtDNS synchronizes labeled records in docker-compose with DNS providers. Inspired by External DNS, ExtDNS makes resources d

DNTSK 6 Dec 24, 2022
This is a Client-Server-System which can share the screen from the server to client and in the other direction.

Screenshare-Streaming-Python This is a Client-Server-System which can share the screen from the server to client and in the other direction. You have

VFX / Videoeffects Creator 1 Nov 19, 2021
Simple P2P application for sending files over open and forwarded network ports.

FileShareV2 A major overhaul to the V1 (now deprecated) FileShare application. V2 brings major improvements in both UI and performance. V2 is now base

Michael Wang 1 Nov 23, 2021
Web-server with a parser, connection to DBMS, and the Hugging Face.

Final_Project Web-server with parser, connection to DBMS and the Hugging Face. Team: Aisha Bazylzhanova(SE-2004), Arysbay Dastan(SE-2004) Installation

Aisha Bazylzhanova 2 Nov 18, 2021
EchoDNS - Analyze your DNS traffic super easy, shows all requested DNS traffic

EchoDNS - Analyze your DNS traffic super easy, shows all requested DNS traffic

Oli Zimmermann 1 Jan 11, 2022
LGPL Pure Python OPC-UA Client and Server

LGPL Pure Python OPC-UA Client and Server

Free OPC-UA Library 1.2k Jan 04, 2023
VRF-StarkNet - Contracts for verifiable randomness on StarkNet

VRF-StarkNet Contracts for verifiable randomness on StarkNet Motivation Deployed

Non 32 Oct 30, 2022
Arp Spoofer using Python 3.

ARP Spoofer / Wifi Killer By Auax Run: Run the application with the following command: python3 spoof.py -t target_ip_address -lh host_ip_address I

Auax 6 Sep 15, 2022
GlokyPortScannar is a really fast tool to scan TCP ports implemented in Python.

GlokyPortScannar is a really fast tool to scan TCP ports implemented in Python. Installation: This program requires Python 3.9. Linux

gl0ky 5 Jun 25, 2022
Python script to stop qBittorrent from torrenting without VPN for users with static IP.

Python script to stop qBittorrent from torrenting without VPN for users with static IP.

voidoak_ 1 Oct 25, 2021
The Delegate Network: An Interactive Voice Response Delegative Democracy Implementation of Liquid Democracy

The Delegate Network Overview The delegate network is a completely transparent, easy-to-use and understand version of what is sometimes called liquid

James Bowery 2 Feb 25, 2022
Monitoring plugin to check network interfaces with Icinga, Nagios and other compatible monitoring solutions

check_network_interface - Monitor network interfaces This is a monitoring plugin for Icinga, Nagios and other compatible monitoring solutions to check

DinoTools 3 Nov 15, 2022
This is a small python code that I use with my NAS server connected to Plex

Spotifarr This is a small python code that I use with my NAS server connected to Plex I didn't appreciate how Lidarr works because it downloads a full

Automator 35 Oct 04, 2022
A simple tcpdump sidecar injector to demonstrate Kubernetes's Mutating Webhook

k8s-tcpdump-webhook A simple tcpdump sidecar injector to demonstrate Kubernetes's Mutating Webhook Build and Deploy Build docker image; docker build -

Bilal Ünal 2 Sep 01, 2022
PyBERT is a serial communication link bit error rate tester simulator with a graphical user interface (GUI).

PyBERT PyBERT is a serial communication link bit error rate tester simulator with a graphical user interface (GUI). It uses the Traits/UI package of t

David Banas 59 Dec 23, 2022
Utility for converting IP Fabric webhooks into a Teams format.

IP Fabric Webhook Integration for Microsoft Teams Setup IP Fabric Setup Go to Settings Webhooks Add webhook Provide a name URL will be: 'http://Y

Community Fabric 1 Jan 26, 2022
Tool that creates a complete copy of your server

Discord-Server-Cloner Tool that creates a complete copy of your server Setup: Open run.bat If the file closes, open cmd And write: pip install -r requ

DEEM 3 Dec 13, 2021
Python Scripts for Cisco Identity Services Engine (ISE)

A set of Python scripts to configure a freshly installed Cisco Identity Services Engine (ISE) for simple operation; in my case, a basic Cisco Software-Defined Access environment.

Roddie Hasan 9 Jul 19, 2022
jarbou3 is rat tool coded in python with C&C which can accept multiple connections from clients

jarbou3 Jarbou3 is rat tool with coded in python with C&C which can accept multi

youhacker55 108 Dec 29, 2022