praudio provides audio preprocessing framework for Deep Learning audio applications

Related tags

Audiopraudio
Overview

README

praudio provides objects and a script for performing complex preprocessing operations on entire audio datasets with one command.

praudio is implemented having Deep Learning audio/music applications in mind.

Operations are carried out on CPU. Preprocessing can also be run on-the-fly, for example, while training a model.

The library uses librosa as an audio processing backend.

How do I install the library?

You can install praudio both with pip via PyPi, and by cloning the praudio repo from GitHub.

For both approaches, it's advisable to use a dedicated Python virtual environment.

Installing from PyPi

Installing from PyPi is the easiest option. In the terminal type:

$ pip install praudio

Installing from GitHub

First, you should clone the repository from GitHub:

$ git clone [email protected]:musikalkemist/praudio.git

Then, move to the project root and, to install the package, type in the terminal:

$ pip install .

You can also use a rule in the available Makefile (see below):

$ make install 

To install the package in development mode use:

$ pip install -e .[testing]

You can also use a rule in Makefile:

$ make install_dev 

This will install all the packages necessary to run the tests, lint, type checker. It will also install the package in 'editable' mode, which is ideal for development.

Python version

praudio works in Python 3.6, 3.7, 3.8.

How do I preprocess an audio dataset?

The core of the library is the preprocess entry point. This script works with a config file. You set the type of preprocessing you want to apply in a yaml file, and then run the script. Your dataset will be entirely preprocessed and the results recursively stored in a directory of your choice that can potentially be created from scratch.

To run the entry point, ensure the library is installed and then type:

$ preprocess /path/to/config.yml

In the config.yml, you should provide the following parameters:

  • dataset_dir: Path to the directory where your audio dataset is stored
  • save_dir: Path where to save the preprocessed audio.
  • Under file_preprocessor, you should provide settings for loader and transforms_chain.
  • loader: Provide settings for the loader.
  • transforms_chain: Parameters for each transform in the sequence. of transforms which are applied to your data (i.e., TransformChain).

These config parameters are used to dinamically initialise the relative objects in the library. To learn what parameters are available at each level in the config file, please refer to the docstrings in the relative objects.

Check out test/config.sampleconfig.yml to see an example of a valid config file.

Package structure

The package is divided into a number of subpackages:

  • config
  • creation
  • io
  • preprocessors
  • transforms

config has facilities to load, save, and validate configuration files, which are used to specify the types of preprocessing pipelines to use.

creation has classes that are responsible to instantiate key objects in the library.

io contains facilities to load / save audio signals from / to files.

preprocessors features objects which are responsible to preprocess single audio files, from loading to storing, as well as, batch of files.

transforms contains a series of objects which manipulate audio signals, such as short-time Fourier transform, log, scaling.

What's the Makefile for?

The Makefile has a series of rules that can be used to ensure quality of the code, and automate repetitive tasks.

Linter

The project uses pylint. The linter helps enforcing a coding standard, sniffs for code smells and offers simple refactoring suggestions.

To run the linter type:

$ make lint

Typehint

The project uses mypy. mypy is an optional static type checker for Python. You can add type hints (PEP 484) to your Python programs, and use mypy to type check them statically.

To run the type checker type:

$ make typehint

Testing

The project uses pytest for unittests. Tests can be run in one go using coverage. This package suggests the percentage of code that is covered in unittests.

To run all the unittests type:

$ make test

Checklist

Checklist is a utility rule that runs the linter, type checker, and the test suite in one go:

$ make checklist

Clean

Use the clean rule to get rid of pyc files and __pychache__:

$ make clean

Dependencies

praudio has the following dependencies:

  • librosa==0.8.1
  • pyyaml==5.4.1
  • types-PyYAML==5.4.6

librosa is extensively used to extract audio features in transform objects.

Current limitations

The praudio preprocessors are capable of operating only on mono signals. This is a significant limitation if you are working in generative music. If you are using the library for audio / music analysis, this shouldn't be a problem.

Future improvements

  • Add audio augmentation / padding / cropping transforms.
  • Enable preprocessing of signals with multiple channels.
  • Turn transform parameters into full-fledged objects (e.g., STFTParams)
  • Instead of using a dictionary for configurations, instantiate parameter objects with validation
  • Implement different types of Savers / Loaders with factories to produce them.
Owner
Valerio Velardo
AI audio/music researcher. Love Python.
Valerio Velardo
spafe: Simplified Python Audio-Features Extraction

spafe aims to simplify features extractions from mono audio files. The library can extract of the following features: BFCC, LFCC, LPC, LPCC, MFCC, IMFCC, MSRCC, NGCC, PNCC, PSRCC, PLP, RPLP, Frequenc

Ayoub Malek 310 Jan 01, 2023
Full LAKH MIDI dataset converted to MuseNet MIDI output format (9 instruments + drums)

LAKH MuseNet MIDI Dataset Full LAKH MIDI dataset converted to MuseNet MIDI output format (9 instruments + drums) Bonus: Choir on Channel 10 Please CC

Alex 6 Nov 20, 2022
XA Music Player - Telegram Music Bot

XA Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) MongoDB (3.12.1) 2nd Telegram Ac

RexAshh 3 Jun 30, 2022
Manipulate audio with a simple and easy high level interface

Pydub Pydub lets you do stuff to audio in a way that isn't stupid. Stuff you might be looking for: Installing Pydub API Documentation Dependencies Pla

James Robert 6.6k Jan 01, 2023
Just-Music - Spotify API Driven Music Web app, that allows to listen and control and share songs

Just Music... Just Music Is A Web APP That Allows Users To Play Song Using Spoti

Ayush Mishra 3 May 01, 2022
An app made in Python using the PyTube and Tkinter libraries to download videos and MP3 audio.

yt-dl (GUI Edition) An app made in Python using the PyTube and Tkinter libraries to download videos and MP3 audio. How do I download this? Windows: Fi

1 Oct 23, 2021
Audio2midi - Automatic Audio-to-symbolic Arrangement

Automatic Audio-to-symbolic Arrangement This is the repository of the project "Audio-to-symbolic Arrangement via Cross-modal Music Representation Lear

Ziyu Wang 24 Dec 05, 2022
A simple music player, powered by Python, utilising various libraries such as Tkinter and Pygame

A simple music player, powered by Python, utilising various libraries such as Tkinter and Pygame

PotentialCoding 2 May 12, 2022
Cobra is a highly-accurate and lightweight voice activity detection (VAD) engine.

On-device voice activity detection (VAD) powered by deep learning.

Picovoice 88 Dec 16, 2022
Noinoi music is smoothly playing music on voice chat of telegram.

NOINOI MUSIC BOT ✨ Features Music & Video stream support MultiChat support Playlist & Queue support Skip, Pause, Resume, Stop feature Music & Video do

2 Feb 13, 2022
Mousai is a simple application that can identify song like Shazam

Mousai is a simple application that can identify song like Shazam. It saves the artist, album, and title of the identified song in a JSON file.

Dave Patrick 662 Jan 07, 2023
Synthesia but open source, made in python and free

PyPiano Synthesia but open source, made in python and free Requirements are in requirements.txt If you struggle with installation of pyaudio, run : pi

DaCapo 11 Nov 06, 2022
Open-Source Tools & Data for Music Source Separation: A Pragmatic Guide for the MIR Practitioner

Open-Source Tools & Data for Music Source Separation: A Pragmatic Guide for the MIR Practitioner

IELab@ Korea University 0 Nov 12, 2021
LibXtract is a simple, portable, lightweight library of audio feature extraction functions.

LibXtract LibXtract is a simple, portable, lightweight library of audio feature extraction functions. The purpose of the library is to provide a relat

Jamie Bullock 215 Nov 16, 2022
This is my voice assistant Patric!

voice-assistant This is my voice assistant Patric! You can add can add commands and even modify his name Indice How to use Installation guide How to u

Norbert Gabos 1 Jun 28, 2022
A Simple Script that will help you to Play / Change Songs with just your Voice

Auto-Spotify using Voice Recognition A Simple Script that will help you to Play / Change Songs with just your Voice Explore the docs » Table of Conten

Mehul Shah 1 Nov 21, 2021
Port Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. / 筆墨クミDeepvocal中文音源

Hitsuboku Kumi (筆墨クミ) is a UTAU virtual singer developed by Cubialpha. This project ports Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. This is the first open-source deepvocal voicebank on Gith

8 Apr 26, 2022
A python program for visualizing MIDI files, and displaying them in a spiral layout

SpiralMusic_python A python program for visualizing MIDI files, and displaying them in a spiral layout For a hardware version using Teensy & LED displ

Gavin 6 Nov 23, 2022
TONet: Tone-Octave Network for Singing Melody Extraction from Polyphonic Music

TONet Introduction The official implementation of "TONet: Tone-Octave Network for Singing Melody Extraction from Polyphonic Music", in ICASSP 2022 We

Knut(Ke) Chen 29 Dec 01, 2022
Voicefixer aims at the restoration of human speech regardless how serious its degraded.

Voicefixer aims at the restoration of human speech regardless how serious its degraded.

Leo 324 Dec 26, 2022