Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Overview

Relatório dos procedimentos executados e resultados obtidos.

Objetivos

  • Treinar um modelo para classificação de SPAM usando o dataset train_data.
  • Classificar a coluna SMS do dataset validation_data como “ok” ou “blocked” a partir do modelo treinado.

Explorando o dataset

A partir das amostras de texto presentes na colula “SMS” do dataset train_data, foram extraidas métricas que auxiliaram a entender os dados, como prepara-los e na difinição de critérios para a escolha do modelo adequado:

  • Número de amostras: total de amostras do datset.
  • Número de classes: total de classes no dataset na coluna “LABEL”.
  • Número de amostras por classe: número de exemplos por classe.
  • Mediana de palavras por amostra: mediana do número de palavras em uma unica amostra em todo dataset.
  • Distribuição de frequência: gráfico com a distribuição do número de ocorrências das 15 palavras mais frequêntes no dataset.
Métrica Valor
Número de amostras 6000
Número de classes 2
Número de amostras classe “ok” 4500
Número de amostras classe “blocked” 1500
Mediana de palavras por amostra 10

Tabela 1: train_data métricas.

distribuicao-orig.jpg

**Figura 1: Distribuição de frequência.** 
Exemplos de SMS não bloqueadas:

recuperamos seu usuario e senha de acesso no infojobs! usuario: [email protected]. senha: miguel28. obrigado! 

MARSH CORRETORA: Anna, boleto parc. 01 do Seg Auto com venc.: 28/12/2018 enviado para:[email protected] com esclarecimentos e instrucoes 

Host : RB_Bicanga Ip: 170.244.231.14 nao esta respondendo ao ping - 2019-04-19 22:30:23

----------------------------------------------------------------------------------------

Exemplos de SMS bloqueadas:

BOLETO REFERENTE AS PARCELAS EM ATRASO DO CONSÓRCIO PELO BB.COM VENCIMENTO PARA HOJE Ñ PODE HAVER QUEBRA NO ACORDO. BONATTO ADV 0800 606 3301.

050003DA0202|lcloud-apple-lnc.com/?iphone=VtBqROY .

BB INFORMA:VALIDE SUA SENHA E EVITE TRANSTORNO. ACESSE: www.Bbrasildesbloqueio.com/?7R8BQ8CI

Figura 2: Amostras de texto

Com base na Tabela 1, observa-se que existem 2 classes e que elas estão desbalanceadas, além disso, a distribuição no Gráfico 1 e a Figura 2 mostram que o texto contém letras maiúsculas, minúsculas, números, pontuação, links, stopwords e caracteres especiais.

Escolha do modelo

Os modelos podem ser amplamente classificados em duas categorias: os que usam informações de ordenação de palavras (modelos de sequência) e aqueles que apenas veem o texto como “sacos” (conjuntos) de palavras (modelos n-gram).

Os modelos de sequência incluem redes neurais convolucionais (CNNs), redes neurais recorrentes (RNNs) e suas variações. Os tipos de modelos n-gram incluem regressão logística, multi layer perceptrons simples MLPs ou redes neurais totalmente conectadas, gradient boosted trees e support vector machines.

Com base nas informações acima e nas métricas extraídas das amostras do dataset, levou-se em consideração a razão entre o número de amostras (S) e a mediana de palavras por amostra (W) como principal critério para a escolha do modelo. Quando o valor dessa razão é pequeno (<1500), MLPs alimentandas por n-grams possuem um bom desempenho.

Nesta análise, o valor S/W obtido no dataset train_data foi de 600 ( 6000 / 10) , por isso foi escolhido o modelo MPLs.

Preparando os dados

Os dados passaram pelas seguintes etapas:

  1. Pré-processamento: apesar de não ter influenciado significativamente no desempenho geral do modelo, foi incluida uma etpa de pré-processamento para remoção de acentuação, stopwords e o texto foi colocado em lowercase.
  2. Downsampling da maioria: as classes com a maioria de amostras foram balanceadas de acordo com as classes com o menor número de amostras. Testes executados, demostraram uma melhora nos resultados.
  3. Holdout: os dados foram divididos em subconjuntos mutuamente exclusivos, de treinamento e teste na proporção 70/30 respectivamente.
  4. Tokenizção e Vetorização: divisão do texto em tokens e conversão em vetores numéricos com TfidfVectorizer.
  5. Feature Selection: selcionado as top 20.000 features mais importantes para determinado rótulo com SelectKbest e f-classif.

Construção, treino e avaliação dos resultados do Modelo

Para construção do modelo MLPs, foram usados os frameworks TensorFlow e Keras. O modelo possui duas camadas Dense, adicionando algumas camadas Dropout para regularização (para evitar overfitting). Foi utilizado o callback EarlyStop para interromper o treinamento quando os validadion loss não diminuirem em dois passos consecutivos.

Os paramêtros para treinar o modelo foram:

learning_rate=1e-3,
epochs=1000,
batch_size=128,
layers=2,
units=64,
dropout_rate=0.2

Após executar a função de treinamento, o modelo convergiu em 29 épocas com uma perda média de 0.0079 e acurácia de ~99.5 % conforme a linha abaixo.

29/29 - 0s - loss: 0.0080 - acc: 0.9956 - 24ms/epoch - 844us/step
[0.00799043569713831, 0.995555579662323]

Na Figura 3a, observamos a relação entre a acurácia nas amostras de treino e teste e a evolução das épocas. Os resultados mostram que o modelo generaliza adequadamente. A Figura 3b, no mesmo sentido, mostra a diminuição dos erros à medida que a acurácia aumenta no decorrer das épocas.

mlp_training_and_validation.jpg

                **Figura 3a: Treino e Validação acurácia.                Figura 3b  Treino e Validação perda.**

Através da matriz de confusão e das métrica na Figura 4, podemos ter mais informações sobre o desempenho do modelo de classificação em questão. O modelo classificou corretamente 461 das 465 amostras não spam , obtendo Precision = 0,993, porém classficou erroneamente como não spam uma amostra que é spam, alcançando um Recall = 0,998.

cf_matrix.jpg

                                   **Figura 4: Matriz de confusão e métricas de classificação.**

Para entender os erros de classificação, foi usado o LIME. Através dele, é possível inspecionar as amostras classificadas incorretamente e entender quais termos foram mais determinantes para os erros. Na Figura 5, a amostra analisada é um falso negativo, algo indesejado quando se trata de segurança.

explicabilidade.jpg

**Figura 5:  Explicação do Lime para um falso negativo** 

Os termos 15, you, to, code, sent e with estão contribuindo para o modelo classificar como não spam e os termos http, itunes, com e link para classificar como spam. A partir de insights fornecidos pelo LIME, é possivel alterar algumas abodagens como pré-processamento, tokenização dentre outras coisas e com isso melhorar a qualidade do modelo.

Conclusão

Foi criado um modelo ****Multi Layer Perceptron (MLPs) usando frameworks como Keras e TensorFlow para classificar dados de SMS do dataset train_data. Após varios testes o modelo atingiu um bom resultado mostrando ser aplicável em dados reais.

O dataset validation_data foi rotulado e exportado. Os dataset rotulado, este relatório, bem como todo o código utilizado na análise estão disponíveis na pasta indicada no Google Drive.

Owner
André Mediote
André Mediote
XAC HID Gamepad implementation for CircuitPython 7 or above.

CircuitPython_XAC_Gamepad Setup process Install CircuitPython 7 or above in your board. Add the init.py file under \lib\adafruit_hid directory of CIRC

5 Dec 19, 2022
Terrible sudoku solver with spaghetti code and performance issues

SudokuSolver Terrible sudoku solver with spaghetti code and performance issues - if it's unable to figure out next step it will stop working, it never

Kamil Bizoń 1 Dec 05, 2021
Generates Windows 95 and 95 OEM keys using the modulus 7 check algorithm

w95keygen-python windowskeygen.py - Generates Windows 95 and 95 OEM keys using the modulus 7 check algorithm Just download and drop in the directory y

Joshua Alto 1 Dec 06, 2021
Extrator de dados do jupiterweb

Extrator de dados do jupiterweb O programa é composto de dois arquivos: Um constando apenas de classes complementares que representam as unidades e as

Bruno Aricó 2 Nov 28, 2022
NORETURN is an esoteric programming language, based around the idea of not going back

NORETURN NORETURN is an esoteric programming language, based around the idea of not going back Concept Program coded in noreturn runs over one array,

1 Dec 15, 2021
Lagrange Interpolation Method-Python

Lagrange Interpolation Method-Python The Lagrange interpolation formula is a way to find a polynomial, called Lagrange polynomial, that takes on certa

Motahare Soltani 2 Jul 05, 2022
Fixed waypoint(pose) navigation for turtlebot simulation.

Turtlebot-NavigationStack-Fixed-Waypoints fixed waypoint(pose) navigation for turtlebot simulation. Task Details Task Permformed using Navigation Stac

Shanmukha Vishnu 1 Apr 08, 2022
A simple python script to convert Rubber Ducky payloads into AutoHotKey scripts

AHKDuckyReplacer A simple python script to convert Rubber Ducky payloads into AutoHotKey scripts. I have also added a sample payload for testing. I wi

Krizsan0596 5 Sep 28, 2022
An electron application to check battery of bluetooth devices connected to linux devices.

bluetooth-battery-electron An electron application to check battery of bluetooth devices connected to linux devices. This project provides an electron

Vasu Sharma 15 Dec 03, 2022
A Sophisticated And Beautiful Doxing Tool

Garuda V1.1 A Sophisticated And Beautiful Doxing Tool Works on Android[Termux] | Linux | Windows Don't Forget to give it a star ❗ How to use ❓ First o

The Cryptonian 67 Jan 10, 2022
A replacement of qsreplace, accepts URLs as standard input, replaces all query string values with user-supplied values and stdout.

Bhedak A replacement of qsreplace, accepts URLs as standard input, replaces all query string values with user-supplied values and stdout. Works on eve

Eshan Singh 84 Dec 31, 2022
Example of my qtile config using the gruvbox colorscheme.

QTILE config Example of my qtile config using the gruvbox colorscheme. unicodes.py unicodes.py returns a widget.TextBox with a unicode. Currently it c

Imanuel Febie 31 Jan 02, 2023
Data Structures and Algorithms Python - Practice data structures and algorithms in python with few small projects

Data Structures and Algorithms All the essential resources and template code nee

Hesham 13 Dec 01, 2022
A python program with an Objective-C GUI for building and booting OpenCore on both legacy and modern Macs

A python program with an Objective-C GUI for building and booting OpenCore on both legacy and modern Macs, see our in-depth Guide for more information.

dortania 4.7k Jan 02, 2023
Simple project to learn more about Bézier curves

Python Quadratic Bézier Simple project to learn more about Bézier curves. On this project i used some api's to graphics and gui pygame thorpy in theor

Kenned Ferreira 2 Mar 06, 2022
Programa principal de la Silla C.D.P.

Silla CDP Página Web Contáctenos Lista de contenidos: Información del proyecto. Licencias. Contacto. Información del proyecto Silla CDP, o Silla Corre

Silla Control de Postura 1 Dec 02, 2021
Blender Add-on That Provides Quick Access to Render Controls

Blender Render Buttons Blender Add-on That Provides Quick Access to Render Controls A Blender 3.0 compatablity update of Blender2.8x-RenderButton v0.0

Don Schnitzius 3 Oct 18, 2022
Live tracking, flight database and competition framework

SkyLines SkyLines is a web platform where pilots can share their flights with others after, or even during flight via live tracking. SkyLines is a sor

SkyLines 367 Dec 27, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
This is a method to build your own qgis configuration packages using osgeo4W.

This is a method to build your own qgis configuration packages using osgeo4W. Then you can automate deployment in your organization with a controled and trusted environnement.

Régis Haubourg 26 Dec 05, 2022